Skip to main content
Solve for s, t
Tick mark Image

Similar Problems from Web Search

Share

4s+3t=26,11s+6t=58
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4s+3t=26
Choose one of the equations and solve it for s by isolating s on the left hand side of the equal sign.
4s=-3t+26
Subtract 3t from both sides of the equation.
s=\frac{1}{4}\left(-3t+26\right)
Divide both sides by 4.
s=-\frac{3}{4}t+\frac{13}{2}
Multiply \frac{1}{4} times -3t+26.
11\left(-\frac{3}{4}t+\frac{13}{2}\right)+6t=58
Substitute -\frac{3t}{4}+\frac{13}{2} for s in the other equation, 11s+6t=58.
-\frac{33}{4}t+\frac{143}{2}+6t=58
Multiply 11 times -\frac{3t}{4}+\frac{13}{2}.
-\frac{9}{4}t+\frac{143}{2}=58
Add -\frac{33t}{4} to 6t.
-\frac{9}{4}t=-\frac{27}{2}
Subtract \frac{143}{2} from both sides of the equation.
t=6
Divide both sides of the equation by -\frac{9}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
s=-\frac{3}{4}\times 6+\frac{13}{2}
Substitute 6 for t in s=-\frac{3}{4}t+\frac{13}{2}. Because the resulting equation contains only one variable, you can solve for s directly.
s=\frac{-9+13}{2}
Multiply -\frac{3}{4} times 6.
s=2
Add \frac{13}{2} to -\frac{9}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
s=2,t=6
The system is now solved.
4s+3t=26,11s+6t=58
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&3\\11&6\end{matrix}\right)\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}26\\58\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&3\\11&6\end{matrix}\right))\left(\begin{matrix}4&3\\11&6\end{matrix}\right)\left(\begin{matrix}s\\t\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\11&6\end{matrix}\right))\left(\begin{matrix}26\\58\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&3\\11&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}s\\t\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\11&6\end{matrix}\right))\left(\begin{matrix}26\\58\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}s\\t\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\11&6\end{matrix}\right))\left(\begin{matrix}26\\58\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}\frac{6}{4\times 6-3\times 11}&-\frac{3}{4\times 6-3\times 11}\\-\frac{11}{4\times 6-3\times 11}&\frac{4}{4\times 6-3\times 11}\end{matrix}\right)\left(\begin{matrix}26\\58\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{1}{3}\\\frac{11}{9}&-\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}26\\58\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 26+\frac{1}{3}\times 58\\\frac{11}{9}\times 26-\frac{4}{9}\times 58\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
Do the arithmetic.
s=2,t=6
Extract the matrix elements s and t.
4s+3t=26,11s+6t=58
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
11\times 4s+11\times 3t=11\times 26,4\times 11s+4\times 6t=4\times 58
To make 4s and 11s equal, multiply all terms on each side of the first equation by 11 and all terms on each side of the second by 4.
44s+33t=286,44s+24t=232
Simplify.
44s-44s+33t-24t=286-232
Subtract 44s+24t=232 from 44s+33t=286 by subtracting like terms on each side of the equal sign.
33t-24t=286-232
Add 44s to -44s. Terms 44s and -44s cancel out, leaving an equation with only one variable that can be solved.
9t=286-232
Add 33t to -24t.
9t=54
Add 286 to -232.
t=6
Divide both sides by 9.
11s+6\times 6=58
Substitute 6 for t in 11s+6t=58. Because the resulting equation contains only one variable, you can solve for s directly.
11s+36=58
Multiply 6 times 6.
11s=22
Subtract 36 from both sides of the equation.
s=2
Divide both sides by 11.
s=2,t=6
The system is now solved.