Skip to main content
Solve for p, q
Tick mark Image

Similar Problems from Web Search

Share

4p+3q=40,3p-4q=5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4p+3q=40
Choose one of the equations and solve it for p by isolating p on the left hand side of the equal sign.
4p=-3q+40
Subtract 3q from both sides of the equation.
p=\frac{1}{4}\left(-3q+40\right)
Divide both sides by 4.
p=-\frac{3}{4}q+10
Multiply \frac{1}{4} times -3q+40.
3\left(-\frac{3}{4}q+10\right)-4q=5
Substitute -\frac{3q}{4}+10 for p in the other equation, 3p-4q=5.
-\frac{9}{4}q+30-4q=5
Multiply 3 times -\frac{3q}{4}+10.
-\frac{25}{4}q+30=5
Add -\frac{9q}{4} to -4q.
-\frac{25}{4}q=-25
Subtract 30 from both sides of the equation.
q=4
Divide both sides of the equation by -\frac{25}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
p=-\frac{3}{4}\times 4+10
Substitute 4 for q in p=-\frac{3}{4}q+10. Because the resulting equation contains only one variable, you can solve for p directly.
p=-3+10
Multiply -\frac{3}{4} times 4.
p=7
Add 10 to -3.
p=7,q=4
The system is now solved.
4p+3q=40,3p-4q=5
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&3\\3&-4\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}40\\5\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}4&3\\3&-4\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}40\\5\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&3\\3&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}40\\5\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}p\\q\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}40\\5\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{4\left(-4\right)-3\times 3}&-\frac{3}{4\left(-4\right)-3\times 3}\\-\frac{3}{4\left(-4\right)-3\times 3}&\frac{4}{4\left(-4\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}40\\5\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{3}{25}\\\frac{3}{25}&-\frac{4}{25}\end{matrix}\right)\left(\begin{matrix}40\\5\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 40+\frac{3}{25}\times 5\\\frac{3}{25}\times 40-\frac{4}{25}\times 5\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}p\\q\end{matrix}\right)=\left(\begin{matrix}7\\4\end{matrix}\right)
Do the arithmetic.
p=7,q=4
Extract the matrix elements p and q.
4p+3q=40,3p-4q=5
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3\times 4p+3\times 3q=3\times 40,4\times 3p+4\left(-4\right)q=4\times 5
To make 4p and 3p equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 4.
12p+9q=120,12p-16q=20
Simplify.
12p-12p+9q+16q=120-20
Subtract 12p-16q=20 from 12p+9q=120 by subtracting like terms on each side of the equal sign.
9q+16q=120-20
Add 12p to -12p. Terms 12p and -12p cancel out, leaving an equation with only one variable that can be solved.
25q=120-20
Add 9q to 16q.
25q=100
Add 120 to -20.
q=4
Divide both sides by 25.
3p-4\times 4=5
Substitute 4 for q in 3p-4q=5. Because the resulting equation contains only one variable, you can solve for p directly.
3p-16=5
Multiply -4 times 4.
3p=21
Add 16 to both sides of the equation.
p=7
Divide both sides by 3.
p=7,q=4
The system is now solved.