Solve for n, y
y=-\frac{1}{7}\approx -0.142857143
n = \frac{47}{28} = 1\frac{19}{28} \approx 1.678571429
Graph
Share
Copied to clipboard
7y=3-4
Consider the second equation. Subtract 4 from both sides.
7y=-1
Subtract 4 from 3 to get -1.
y=-\frac{1}{7}
Divide both sides by 7.
4n+5\left(-\frac{1}{7}\right)=6
Consider the first equation. Insert the known values of variables into the equation.
4n-\frac{5}{7}=6
Multiply 5 and -\frac{1}{7} to get -\frac{5}{7}.
4n=6+\frac{5}{7}
Add \frac{5}{7} to both sides.
4n=\frac{47}{7}
Add 6 and \frac{5}{7} to get \frac{47}{7}.
n=\frac{\frac{47}{7}}{4}
Divide both sides by 4.
n=\frac{47}{7\times 4}
Express \frac{\frac{47}{7}}{4} as a single fraction.
n=\frac{47}{28}
Multiply 7 and 4 to get 28.
n=\frac{47}{28} y=-\frac{1}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}