\left. \begin{array} { l } { 4 a ^ { 2 } + 4 a + 1 - 16 a ^ { 4 } } \\ { 2 a ^ { 2 } + 2 a - 1 - 4 a ^ { 3 } } \end{array} \right.
Least Common Multiple
\left(2a-1\right)\left(2a^{2}-1\right)\left(16a^{4}-\left(-2a-1\right)^{2}\right)
Evaluate
-16a^{4}+\left(2a+1\right)^{2},\ -4a^{3}+2a^{2}+2a-1
Share
Copied to clipboard
-16a^{4}+\left(2a+1\right)^{2}=-4\left(a-\left(-\frac{1}{4}\sqrt{5}+\frac{1}{4}\right)\right)\left(a-\left(\frac{1}{4}\sqrt{5}+\frac{1}{4}\right)\right)\left(4a^{2}+2a+1\right) 2a^{2}+2a-1-4a^{3}=\left(-2a+1\right)\left(2a^{2}-1\right)
Factor the expressions that are not already factored.
4\left(2a-1\right)\left(a-\frac{1-\sqrt{5}}{4}\right)\left(a-\frac{\sqrt{5}+1}{4}\right)\left(2a^{2}-1\right)\left(4a^{2}+2a+1\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
64a^{7}-32a^{6}-48a^{5}+8a^{4}+12a^{3}+6a^{2}-2a-1
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}