Solve for L, m
L=1300
m=600
Share
Copied to clipboard
4L+2m=6400,6L+2m=9000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4L+2m=6400
Choose one of the equations and solve it for L by isolating L on the left hand side of the equal sign.
4L=-2m+6400
Subtract 2m from both sides of the equation.
L=\frac{1}{4}\left(-2m+6400\right)
Divide both sides by 4.
L=-\frac{1}{2}m+1600
Multiply \frac{1}{4} times -2m+6400.
6\left(-\frac{1}{2}m+1600\right)+2m=9000
Substitute -\frac{m}{2}+1600 for L in the other equation, 6L+2m=9000.
-3m+9600+2m=9000
Multiply 6 times -\frac{m}{2}+1600.
-m+9600=9000
Add -3m to 2m.
-m=-600
Subtract 9600 from both sides of the equation.
m=600
Divide both sides by -1.
L=-\frac{1}{2}\times 600+1600
Substitute 600 for m in L=-\frac{1}{2}m+1600. Because the resulting equation contains only one variable, you can solve for L directly.
L=-300+1600
Multiply -\frac{1}{2} times 600.
L=1300
Add 1600 to -300.
L=1300,m=600
The system is now solved.
4L+2m=6400,6L+2m=9000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&2\\6&2\end{matrix}\right)\left(\begin{matrix}L\\m\end{matrix}\right)=\left(\begin{matrix}6400\\9000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&2\\6&2\end{matrix}\right))\left(\begin{matrix}4&2\\6&2\end{matrix}\right)\left(\begin{matrix}L\\m\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\6&2\end{matrix}\right))\left(\begin{matrix}6400\\9000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&2\\6&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}L\\m\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\6&2\end{matrix}\right))\left(\begin{matrix}6400\\9000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}L\\m\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\6&2\end{matrix}\right))\left(\begin{matrix}6400\\9000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}L\\m\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-2\times 6}&-\frac{2}{4\times 2-2\times 6}\\-\frac{6}{4\times 2-2\times 6}&\frac{4}{4\times 2-2\times 6}\end{matrix}\right)\left(\begin{matrix}6400\\9000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}L\\m\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{3}{2}&-1\end{matrix}\right)\left(\begin{matrix}6400\\9000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}L\\m\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 6400+\frac{1}{2}\times 9000\\\frac{3}{2}\times 6400-9000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}L\\m\end{matrix}\right)=\left(\begin{matrix}1300\\600\end{matrix}\right)
Do the arithmetic.
L=1300,m=600
Extract the matrix elements L and m.
4L+2m=6400,6L+2m=9000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4L-6L+2m-2m=6400-9000
Subtract 6L+2m=9000 from 4L+2m=6400 by subtracting like terms on each side of the equal sign.
4L-6L=6400-9000
Add 2m to -2m. Terms 2m and -2m cancel out, leaving an equation with only one variable that can be solved.
-2L=6400-9000
Add 4L to -6L.
-2L=-2600
Add 6400 to -9000.
L=1300
Divide both sides by -2.
6\times 1300+2m=9000
Substitute 1300 for L in 6L+2m=9000. Because the resulting equation contains only one variable, you can solve for m directly.
7800+2m=9000
Multiply 6 times 1300.
2m=1200
Subtract 7800 from both sides of the equation.
m=600
Divide both sides by 2.
L=1300,m=600
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}