Solve for I_1, I_2, I_3
I_{1} = \frac{731}{4} = 182\frac{3}{4} = 182.75
I_{2}=181
I_{3} = \frac{4337}{10} = 433\frac{7}{10} = 433.7
Share
Copied to clipboard
-10I_{2}=3-1813
Consider the third equation. Subtract 1813 from both sides.
-10I_{2}=-1810
Subtract 1813 from 3 to get -1810.
I_{2}=\frac{-1810}{-10}
Divide both sides by -10.
I_{2}=181
Divide -1810 by -10 to get 181.
4I_{1}-4\times 181=7
Consider the first equation. Insert the known values of variables into the equation.
4I_{1}-724=7
Multiply -4 and 181 to get -724.
4I_{1}=7+724
Add 724 to both sides.
4I_{1}=731
Add 7 and 724 to get 731.
I_{1}=\frac{731}{4}
Divide both sides by 4.
-4\times \frac{731}{4}+28\times 181-10I_{3}=0
Consider the second equation. Insert the known values of variables into the equation.
-731+28\times 181-10I_{3}=0
Multiply -4 and \frac{731}{4} to get -731.
-731+5068-10I_{3}=0
Multiply 28 and 181 to get 5068.
4337-10I_{3}=0
Add -731 and 5068 to get 4337.
-10I_{3}=-4337
Subtract 4337 from both sides. Anything subtracted from zero gives its negation.
I_{3}=\frac{-4337}{-10}
Divide both sides by -10.
I_{3}=\frac{4337}{10}
Fraction \frac{-4337}{-10} can be simplified to \frac{4337}{10} by removing the negative sign from both the numerator and the denominator.
I_{1}=\frac{731}{4} I_{2}=181 I_{3}=\frac{4337}{10}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}