Solve for I_1, I_2, I_3
I_{1} = \frac{737}{332} = 2\frac{73}{332} \approx 2.219879518
I_{2}=\frac{39}{83}\approx 0.469879518
I_{3}=\frac{71}{166}\approx 0.427710843
Share
Copied to clipboard
I_{1}=I_{2}+\frac{7}{4}
Solve 4I_{1}-4I_{2}=7 for I_{1}.
-4\left(I_{2}+\frac{7}{4}\right)+28I_{2}-10I_{3}=0
Substitute I_{2}+\frac{7}{4} for I_{1} in the equation -4I_{1}+28I_{2}-10I_{3}=0.
I_{2}=\frac{7}{24}+\frac{5}{12}I_{3} I_{3}=\frac{5}{9}I_{2}+\frac{1}{6}
Solve the second equation for I_{2} and the third equation for I_{3}.
I_{3}=\frac{5}{9}\left(\frac{7}{24}+\frac{5}{12}I_{3}\right)+\frac{1}{6}
Substitute \frac{7}{24}+\frac{5}{12}I_{3} for I_{2} in the equation I_{3}=\frac{5}{9}I_{2}+\frac{1}{6}.
I_{3}=\frac{71}{166}
Solve I_{3}=\frac{5}{9}\left(\frac{7}{24}+\frac{5}{12}I_{3}\right)+\frac{1}{6} for I_{3}.
I_{2}=\frac{7}{24}+\frac{5}{12}\times \frac{71}{166}
Substitute \frac{71}{166} for I_{3} in the equation I_{2}=\frac{7}{24}+\frac{5}{12}I_{3}.
I_{2}=\frac{39}{83}
Calculate I_{2} from I_{2}=\frac{7}{24}+\frac{5}{12}\times \frac{71}{166}.
I_{1}=\frac{39}{83}+\frac{7}{4}
Substitute \frac{39}{83} for I_{2} in the equation I_{1}=I_{2}+\frac{7}{4}.
I_{1}=\frac{737}{332}
Calculate I_{1} from I_{1}=\frac{39}{83}+\frac{7}{4}.
I_{1}=\frac{737}{332} I_{2}=\frac{39}{83} I_{3}=\frac{71}{166}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}