Solve for x, y
x=3
y=-2
Graph
Share
Copied to clipboard
8x-12=3\left(3y+10\right)
Consider the first equation. Use the distributive property to multiply 4 by 2x-3.
8x-12=9y+30
Use the distributive property to multiply 3 by 3y+10.
8x-12-9y=30
Subtract 9y from both sides.
8x-9y=30+12
Add 12 to both sides.
8x-9y=42
Add 30 and 12 to get 42.
12x-9=9\left(2y+7\right)
Consider the second equation. Use the distributive property to multiply 3 by 4x-3.
12x-9=18y+63
Use the distributive property to multiply 9 by 2y+7.
12x-9-18y=63
Subtract 18y from both sides.
12x-18y=63+9
Add 9 to both sides.
12x-18y=72
Add 63 and 9 to get 72.
8x-9y=42,12x-18y=72
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8x-9y=42
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
8x=9y+42
Add 9y to both sides of the equation.
x=\frac{1}{8}\left(9y+42\right)
Divide both sides by 8.
x=\frac{9}{8}y+\frac{21}{4}
Multiply \frac{1}{8} times 9y+42.
12\left(\frac{9}{8}y+\frac{21}{4}\right)-18y=72
Substitute \frac{9y}{8}+\frac{21}{4} for x in the other equation, 12x-18y=72.
\frac{27}{2}y+63-18y=72
Multiply 12 times \frac{9y}{8}+\frac{21}{4}.
-\frac{9}{2}y+63=72
Add \frac{27y}{2} to -18y.
-\frac{9}{2}y=9
Subtract 63 from both sides of the equation.
y=-2
Divide both sides of the equation by -\frac{9}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{9}{8}\left(-2\right)+\frac{21}{4}
Substitute -2 for y in x=\frac{9}{8}y+\frac{21}{4}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-9+21}{4}
Multiply \frac{9}{8} times -2.
x=3
Add \frac{21}{4} to -\frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=3,y=-2
The system is now solved.
8x-12=3\left(3y+10\right)
Consider the first equation. Use the distributive property to multiply 4 by 2x-3.
8x-12=9y+30
Use the distributive property to multiply 3 by 3y+10.
8x-12-9y=30
Subtract 9y from both sides.
8x-9y=30+12
Add 12 to both sides.
8x-9y=42
Add 30 and 12 to get 42.
12x-9=9\left(2y+7\right)
Consider the second equation. Use the distributive property to multiply 3 by 4x-3.
12x-9=18y+63
Use the distributive property to multiply 9 by 2y+7.
12x-9-18y=63
Subtract 18y from both sides.
12x-18y=63+9
Add 9 to both sides.
12x-18y=72
Add 63 and 9 to get 72.
8x-9y=42,12x-18y=72
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}8&-9\\12&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}42\\72\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}8&-9\\12&-18\end{matrix}\right))\left(\begin{matrix}8&-9\\12&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-9\\12&-18\end{matrix}\right))\left(\begin{matrix}42\\72\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}8&-9\\12&-18\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-9\\12&-18\end{matrix}\right))\left(\begin{matrix}42\\72\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-9\\12&-18\end{matrix}\right))\left(\begin{matrix}42\\72\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{8\left(-18\right)-\left(-9\times 12\right)}&-\frac{-9}{8\left(-18\right)-\left(-9\times 12\right)}\\-\frac{12}{8\left(-18\right)-\left(-9\times 12\right)}&\frac{8}{8\left(-18\right)-\left(-9\times 12\right)}\end{matrix}\right)\left(\begin{matrix}42\\72\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{4}\\\frac{1}{3}&-\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}42\\72\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 42-\frac{1}{4}\times 72\\\frac{1}{3}\times 42-\frac{2}{9}\times 72\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Do the arithmetic.
x=3,y=-2
Extract the matrix elements x and y.
8x-12=3\left(3y+10\right)
Consider the first equation. Use the distributive property to multiply 4 by 2x-3.
8x-12=9y+30
Use the distributive property to multiply 3 by 3y+10.
8x-12-9y=30
Subtract 9y from both sides.
8x-9y=30+12
Add 12 to both sides.
8x-9y=42
Add 30 and 12 to get 42.
12x-9=9\left(2y+7\right)
Consider the second equation. Use the distributive property to multiply 3 by 4x-3.
12x-9=18y+63
Use the distributive property to multiply 9 by 2y+7.
12x-9-18y=63
Subtract 18y from both sides.
12x-18y=63+9
Add 9 to both sides.
12x-18y=72
Add 63 and 9 to get 72.
8x-9y=42,12x-18y=72
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
12\times 8x+12\left(-9\right)y=12\times 42,8\times 12x+8\left(-18\right)y=8\times 72
To make 8x and 12x equal, multiply all terms on each side of the first equation by 12 and all terms on each side of the second by 8.
96x-108y=504,96x-144y=576
Simplify.
96x-96x-108y+144y=504-576
Subtract 96x-144y=576 from 96x-108y=504 by subtracting like terms on each side of the equal sign.
-108y+144y=504-576
Add 96x to -96x. Terms 96x and -96x cancel out, leaving an equation with only one variable that can be solved.
36y=504-576
Add -108y to 144y.
36y=-72
Add 504 to -576.
y=-2
Divide both sides by 36.
12x-18\left(-2\right)=72
Substitute -2 for y in 12x-18y=72. Because the resulting equation contains only one variable, you can solve for x directly.
12x+36=72
Multiply -18 times -2.
12x=36
Subtract 36 from both sides of the equation.
x=3
Divide both sides by 12.
x=3,y=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}