Solve for x, y
x=-\frac{7}{18}\approx -0.388888889
y = -\frac{58}{51} = -1\frac{7}{51} \approx -1.137254902
Graph
Share
Copied to clipboard
36x=-14
Consider the first equation. Combine -y and y to get 0.
x=\frac{-14}{36}
Divide both sides by 36.
x=-\frac{7}{18}
Reduce the fraction \frac{-14}{36} to lowest terms by extracting and canceling out 2.
24\left(-\frac{7}{18}\right)-17y=10
Consider the second equation. Insert the known values of variables into the equation.
-\frac{28}{3}-17y=10
Multiply 24 and -\frac{7}{18} to get -\frac{28}{3}.
-17y=10+\frac{28}{3}
Add \frac{28}{3} to both sides.
-17y=\frac{58}{3}
Add 10 and \frac{28}{3} to get \frac{58}{3}.
y=\frac{\frac{58}{3}}{-17}
Divide both sides by -17.
y=\frac{58}{3\left(-17\right)}
Express \frac{\frac{58}{3}}{-17} as a single fraction.
y=\frac{58}{-51}
Multiply 3 and -17 to get -51.
y=-\frac{58}{51}
Fraction \frac{58}{-51} can be rewritten as -\frac{58}{51} by extracting the negative sign.
x=-\frac{7}{18} y=-\frac{58}{51}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}