Skip to main content
Solve for I_1, I_2, I_3
Tick mark Image

Similar Problems from Web Search

Share

I_{1}=-I_{2}+\frac{36}{13}
Solve 36=I_{1}\left(9+4\right)-I_{2}\left(-9-4\right)-3\times 0 for I_{1}.
0=\left(-I_{2}+\frac{36}{13}\right)\left(-9-4\right)+I_{2}\left(4+9+6\right)-I_{3}\left(-6\right) 0=\left(-I_{2}+\frac{36}{13}\right)\times 0-I_{2}\left(-6\right)+I_{3}\left(6+3+6\right)
Substitute -I_{2}+\frac{36}{13} for I_{1} in the second and third equation.
I_{2}=\frac{9}{8}-\frac{3}{16}I_{3} I_{3}=-\frac{2}{5}I_{2}
Solve these equations for I_{2} and I_{3} respectively.
I_{3}=-\frac{2}{5}\left(\frac{9}{8}-\frac{3}{16}I_{3}\right)
Substitute \frac{9}{8}-\frac{3}{16}I_{3} for I_{2} in the equation I_{3}=-\frac{2}{5}I_{2}.
I_{3}=-\frac{18}{37}
Solve I_{3}=-\frac{2}{5}\left(\frac{9}{8}-\frac{3}{16}I_{3}\right) for I_{3}.
I_{2}=\frac{9}{8}-\frac{3}{16}\left(-\frac{18}{37}\right)
Substitute -\frac{18}{37} for I_{3} in the equation I_{2}=\frac{9}{8}-\frac{3}{16}I_{3}.
I_{2}=\frac{45}{37}
Calculate I_{2} from I_{2}=\frac{9}{8}-\frac{3}{16}\left(-\frac{18}{37}\right).
I_{1}=-\frac{45}{37}+\frac{36}{13}
Substitute \frac{45}{37} for I_{2} in the equation I_{1}=-I_{2}+\frac{36}{13}.
I_{1}=\frac{747}{481}
Calculate I_{1} from I_{1}=-\frac{45}{37}+\frac{36}{13}.
I_{1}=\frac{747}{481} I_{2}=\frac{45}{37} I_{3}=-\frac{18}{37}
The system is now solved.