Solve for x, y
x=8
y = -\frac{7}{2} = -3\frac{1}{2} = -3.5
Graph
Share
Copied to clipboard
4x+3=35
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
4x=35-3
Subtract 3 from both sides.
4x=32
Subtract 3 from 35 to get 32.
x=\frac{32}{4}
Divide both sides by 4.
x=8
Divide 32 by 4 to get 8.
10=3\times 8+4y
Consider the second equation. Insert the known values of variables into the equation.
10=24+4y
Multiply 3 and 8 to get 24.
24+4y=10
Swap sides so that all variable terms are on the left hand side.
4y=10-24
Subtract 24 from both sides.
4y=-14
Subtract 24 from 10 to get -14.
y=\frac{-14}{4}
Divide both sides by 4.
y=-\frac{7}{2}
Reduce the fraction \frac{-14}{4} to lowest terms by extracting and canceling out 2.
x=8 y=-\frac{7}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}