Solve for m, b
m=15
b=-3
Share
Copied to clipboard
23m+b=342
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
10m+b=147
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
23m+b=342,10m+b=147
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
23m+b=342
Choose one of the equations and solve it for m by isolating m on the left hand side of the equal sign.
23m=-b+342
Subtract b from both sides of the equation.
m=\frac{1}{23}\left(-b+342\right)
Divide both sides by 23.
m=-\frac{1}{23}b+\frac{342}{23}
Multiply \frac{1}{23} times -b+342.
10\left(-\frac{1}{23}b+\frac{342}{23}\right)+b=147
Substitute \frac{-b+342}{23} for m in the other equation, 10m+b=147.
-\frac{10}{23}b+\frac{3420}{23}+b=147
Multiply 10 times \frac{-b+342}{23}.
\frac{13}{23}b+\frac{3420}{23}=147
Add -\frac{10b}{23} to b.
\frac{13}{23}b=-\frac{39}{23}
Subtract \frac{3420}{23} from both sides of the equation.
b=-3
Divide both sides of the equation by \frac{13}{23}, which is the same as multiplying both sides by the reciprocal of the fraction.
m=-\frac{1}{23}\left(-3\right)+\frac{342}{23}
Substitute -3 for b in m=-\frac{1}{23}b+\frac{342}{23}. Because the resulting equation contains only one variable, you can solve for m directly.
m=\frac{3+342}{23}
Multiply -\frac{1}{23} times -3.
m=15
Add \frac{342}{23} to \frac{3}{23} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=15,b=-3
The system is now solved.
23m+b=342
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
10m+b=147
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
23m+b=342,10m+b=147
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}23&1\\10&1\end{matrix}\right)\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}342\\147\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}23&1\\10&1\end{matrix}\right))\left(\begin{matrix}23&1\\10&1\end{matrix}\right)\left(\begin{matrix}m\\b\end{matrix}\right)=inverse(\left(\begin{matrix}23&1\\10&1\end{matrix}\right))\left(\begin{matrix}342\\147\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}23&1\\10&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\b\end{matrix}\right)=inverse(\left(\begin{matrix}23&1\\10&1\end{matrix}\right))\left(\begin{matrix}342\\147\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}m\\b\end{matrix}\right)=inverse(\left(\begin{matrix}23&1\\10&1\end{matrix}\right))\left(\begin{matrix}342\\147\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{23-10}&-\frac{1}{23-10}\\-\frac{10}{23-10}&\frac{23}{23-10}\end{matrix}\right)\left(\begin{matrix}342\\147\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}&-\frac{1}{13}\\-\frac{10}{13}&\frac{23}{13}\end{matrix}\right)\left(\begin{matrix}342\\147\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}\times 342-\frac{1}{13}\times 147\\-\frac{10}{13}\times 342+\frac{23}{13}\times 147\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}m\\b\end{matrix}\right)=\left(\begin{matrix}15\\-3\end{matrix}\right)
Do the arithmetic.
m=15,b=-3
Extract the matrix elements m and b.
23m+b=342
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
10m+b=147
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
23m+b=342,10m+b=147
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
23m-10m+b-b=342-147
Subtract 10m+b=147 from 23m+b=342 by subtracting like terms on each side of the equal sign.
23m-10m=342-147
Add b to -b. Terms b and -b cancel out, leaving an equation with only one variable that can be solved.
13m=342-147
Add 23m to -10m.
13m=195
Add 342 to -147.
m=15
Divide both sides by 13.
10\times 15+b=147
Substitute 15 for m in 10m+b=147. Because the resulting equation contains only one variable, you can solve for b directly.
150+b=147
Multiply 10 times 15.
b=-3
Subtract 150 from both sides of the equation.
m=15,b=-3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}