Solve for n, y
y = \frac{466}{25} = 18\frac{16}{25} = 18.64
n = \frac{8}{5} = 1\frac{3}{5} = 1.6
Share
Copied to clipboard
5n=42-34
Consider the first equation. Subtract 34 from both sides.
5n=8
Subtract 34 from 42 to get 8.
n=\frac{8}{5}
Divide both sides by 5.
3\times \frac{8}{5}+5y=98
Consider the second equation. Insert the known values of variables into the equation.
\frac{24}{5}+5y=98
Multiply 3 and \frac{8}{5} to get \frac{24}{5}.
5y=98-\frac{24}{5}
Subtract \frac{24}{5} from both sides.
5y=\frac{466}{5}
Subtract \frac{24}{5} from 98 to get \frac{466}{5}.
y=\frac{\frac{466}{5}}{5}
Divide both sides by 5.
y=\frac{466}{5\times 5}
Express \frac{\frac{466}{5}}{5} as a single fraction.
y=\frac{466}{25}
Multiply 5 and 5 to get 25.
n=\frac{8}{5} y=\frac{466}{25}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}