Solve for x, y
x=41
y=2792
Graph
Share
Copied to clipboard
332+60x-y=0
Consider the first equation. Subtract y from both sides.
60x-y=-332
Subtract 332 from both sides. Anything subtracted from zero gives its negation.
250+62x-y=0
Consider the second equation. Subtract y from both sides.
62x-y=-250
Subtract 250 from both sides. Anything subtracted from zero gives its negation.
60x-y=-332,62x-y=-250
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
60x-y=-332
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
60x=y-332
Add y to both sides of the equation.
x=\frac{1}{60}\left(y-332\right)
Divide both sides by 60.
x=\frac{1}{60}y-\frac{83}{15}
Multiply \frac{1}{60} times y-332.
62\left(\frac{1}{60}y-\frac{83}{15}\right)-y=-250
Substitute -\frac{83}{15}+\frac{y}{60} for x in the other equation, 62x-y=-250.
\frac{31}{30}y-\frac{5146}{15}-y=-250
Multiply 62 times -\frac{83}{15}+\frac{y}{60}.
\frac{1}{30}y-\frac{5146}{15}=-250
Add \frac{31y}{30} to -y.
\frac{1}{30}y=\frac{1396}{15}
Add \frac{5146}{15} to both sides of the equation.
y=2792
Multiply both sides by 30.
x=\frac{1}{60}\times 2792-\frac{83}{15}
Substitute 2792 for y in x=\frac{1}{60}y-\frac{83}{15}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{698-83}{15}
Multiply \frac{1}{60} times 2792.
x=41
Add -\frac{83}{15} to \frac{698}{15} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=41,y=2792
The system is now solved.
332+60x-y=0
Consider the first equation. Subtract y from both sides.
60x-y=-332
Subtract 332 from both sides. Anything subtracted from zero gives its negation.
250+62x-y=0
Consider the second equation. Subtract y from both sides.
62x-y=-250
Subtract 250 from both sides. Anything subtracted from zero gives its negation.
60x-y=-332,62x-y=-250
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}60&-1\\62&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-332\\-250\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}60&-1\\62&-1\end{matrix}\right))\left(\begin{matrix}60&-1\\62&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&-1\\62&-1\end{matrix}\right))\left(\begin{matrix}-332\\-250\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}60&-1\\62&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&-1\\62&-1\end{matrix}\right))\left(\begin{matrix}-332\\-250\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&-1\\62&-1\end{matrix}\right))\left(\begin{matrix}-332\\-250\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{60\left(-1\right)-\left(-62\right)}&-\frac{-1}{60\left(-1\right)-\left(-62\right)}\\-\frac{62}{60\left(-1\right)-\left(-62\right)}&\frac{60}{60\left(-1\right)-\left(-62\right)}\end{matrix}\right)\left(\begin{matrix}-332\\-250\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\-31&30\end{matrix}\right)\left(\begin{matrix}-332\\-250\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-332\right)+\frac{1}{2}\left(-250\right)\\-31\left(-332\right)+30\left(-250\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}41\\2792\end{matrix}\right)
Do the arithmetic.
x=41,y=2792
Extract the matrix elements x and y.
332+60x-y=0
Consider the first equation. Subtract y from both sides.
60x-y=-332
Subtract 332 from both sides. Anything subtracted from zero gives its negation.
250+62x-y=0
Consider the second equation. Subtract y from both sides.
62x-y=-250
Subtract 250 from both sides. Anything subtracted from zero gives its negation.
60x-y=-332,62x-y=-250
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
60x-62x-y+y=-332+250
Subtract 62x-y=-250 from 60x-y=-332 by subtracting like terms on each side of the equal sign.
60x-62x=-332+250
Add -y to y. Terms -y and y cancel out, leaving an equation with only one variable that can be solved.
-2x=-332+250
Add 60x to -62x.
-2x=-82
Add -332 to 250.
x=41
Divide both sides by -2.
62\times 41-y=-250
Substitute 41 for x in 62x-y=-250. Because the resulting equation contains only one variable, you can solve for y directly.
2542-y=-250
Multiply 62 times 41.
-y=-2792
Subtract 2542 from both sides of the equation.
y=2792
Divide both sides by -1.
x=41,y=2792
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}