Solve for c, d
c = \frac{601}{30} = 20\frac{1}{30} \approx 20.033333333
d = -\frac{1991}{30} = -66\frac{11}{30} \approx -66.366666667
Share
Copied to clipboard
36c+6d=323
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
121c+11d=1694
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
36c+6d=323,121c+11d=1694
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
36c+6d=323
Choose one of the equations and solve it for c by isolating c on the left hand side of the equal sign.
36c=-6d+323
Subtract 6d from both sides of the equation.
c=\frac{1}{36}\left(-6d+323\right)
Divide both sides by 36.
c=-\frac{1}{6}d+\frac{323}{36}
Multiply \frac{1}{36} times -6d+323.
121\left(-\frac{1}{6}d+\frac{323}{36}\right)+11d=1694
Substitute -\frac{d}{6}+\frac{323}{36} for c in the other equation, 121c+11d=1694.
-\frac{121}{6}d+\frac{39083}{36}+11d=1694
Multiply 121 times -\frac{d}{6}+\frac{323}{36}.
-\frac{55}{6}d+\frac{39083}{36}=1694
Add -\frac{121d}{6} to 11d.
-\frac{55}{6}d=\frac{21901}{36}
Subtract \frac{39083}{36} from both sides of the equation.
d=-\frac{1991}{30}
Divide both sides of the equation by -\frac{55}{6}, which is the same as multiplying both sides by the reciprocal of the fraction.
c=-\frac{1}{6}\left(-\frac{1991}{30}\right)+\frac{323}{36}
Substitute -\frac{1991}{30} for d in c=-\frac{1}{6}d+\frac{323}{36}. Because the resulting equation contains only one variable, you can solve for c directly.
c=\frac{1991}{180}+\frac{323}{36}
Multiply -\frac{1}{6} times -\frac{1991}{30} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
c=\frac{601}{30}
Add \frac{323}{36} to \frac{1991}{180} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
c=\frac{601}{30},d=-\frac{1991}{30}
The system is now solved.
36c+6d=323
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
121c+11d=1694
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
36c+6d=323,121c+11d=1694
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}36&6\\121&11\end{matrix}\right)\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}323\\1694\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}36&6\\121&11\end{matrix}\right))\left(\begin{matrix}36&6\\121&11\end{matrix}\right)\left(\begin{matrix}c\\d\end{matrix}\right)=inverse(\left(\begin{matrix}36&6\\121&11\end{matrix}\right))\left(\begin{matrix}323\\1694\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}36&6\\121&11\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}c\\d\end{matrix}\right)=inverse(\left(\begin{matrix}36&6\\121&11\end{matrix}\right))\left(\begin{matrix}323\\1694\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}c\\d\end{matrix}\right)=inverse(\left(\begin{matrix}36&6\\121&11\end{matrix}\right))\left(\begin{matrix}323\\1694\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}\frac{11}{36\times 11-6\times 121}&-\frac{6}{36\times 11-6\times 121}\\-\frac{121}{36\times 11-6\times 121}&\frac{36}{36\times 11-6\times 121}\end{matrix}\right)\left(\begin{matrix}323\\1694\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{30}&\frac{1}{55}\\\frac{11}{30}&-\frac{6}{55}\end{matrix}\right)\left(\begin{matrix}323\\1694\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{30}\times 323+\frac{1}{55}\times 1694\\\frac{11}{30}\times 323-\frac{6}{55}\times 1694\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}c\\d\end{matrix}\right)=\left(\begin{matrix}\frac{601}{30}\\-\frac{1991}{30}\end{matrix}\right)
Do the arithmetic.
c=\frac{601}{30},d=-\frac{1991}{30}
Extract the matrix elements c and d.
36c+6d=323
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
121c+11d=1694
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
36c+6d=323,121c+11d=1694
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
121\times 36c+121\times 6d=121\times 323,36\times 121c+36\times 11d=36\times 1694
To make 36c and 121c equal, multiply all terms on each side of the first equation by 121 and all terms on each side of the second by 36.
4356c+726d=39083,4356c+396d=60984
Simplify.
4356c-4356c+726d-396d=39083-60984
Subtract 4356c+396d=60984 from 4356c+726d=39083 by subtracting like terms on each side of the equal sign.
726d-396d=39083-60984
Add 4356c to -4356c. Terms 4356c and -4356c cancel out, leaving an equation with only one variable that can be solved.
330d=39083-60984
Add 726d to -396d.
330d=-21901
Add 39083 to -60984.
d=-\frac{1991}{30}
Divide both sides by 330.
121c+11\left(-\frac{1991}{30}\right)=1694
Substitute -\frac{1991}{30} for d in 121c+11d=1694. Because the resulting equation contains only one variable, you can solve for c directly.
121c-\frac{21901}{30}=1694
Multiply 11 times -\frac{1991}{30}.
121c=\frac{72721}{30}
Add \frac{21901}{30} to both sides of the equation.
c=\frac{601}{30}
Divide both sides by 121.
c=\frac{601}{30},d=-\frac{1991}{30}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}