\left. \begin{array} { l } { 32 - ( - \frac { 3 } { 4 } ) } \\ { - \frac { 5 } { 24 } + ( - 2,1 ) } \end{array} \right.
Evaluate
\frac{3653}{120}\approx 30,441666667
Factor
\frac{13 \cdot 281}{3 \cdot 5 \cdot 2 ^ {3}} = 30\frac{53}{120} = 30.441666666666666
Share
Copied to clipboard
32+\frac{3}{4}-\frac{5}{24}-2,1
The opposite of -\frac{3}{4} is \frac{3}{4}.
\frac{128}{4}+\frac{3}{4}-\frac{5}{24}-2,1
Convert 32 to fraction \frac{128}{4}.
\frac{128+3}{4}-\frac{5}{24}-2,1
Since \frac{128}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{131}{4}-\frac{5}{24}-2,1
Add 128 and 3 to get 131.
\frac{786}{24}-\frac{5}{24}-2,1
Least common multiple of 4 and 24 is 24. Convert \frac{131}{4} and \frac{5}{24} to fractions with denominator 24.
\frac{786-5}{24}-2,1
Since \frac{786}{24} and \frac{5}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{781}{24}-2,1
Subtract 5 from 786 to get 781.
\frac{781}{24}-\frac{21}{10}
Convert decimal number 2,1 to fraction \frac{21}{10}.
\frac{3905}{120}-\frac{252}{120}
Least common multiple of 24 and 10 is 120. Convert \frac{781}{24} and \frac{21}{10} to fractions with denominator 120.
\frac{3905-252}{120}
Since \frac{3905}{120} and \frac{252}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{3653}{120}
Subtract 252 from 3905 to get 3653.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}