Solve for c, B
c=-85
B = \frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
31=2\times 16+84+c
Consider the first equation. Calculate 4 to the power of 2 and get 16.
31=32+84+c
Multiply 2 and 16 to get 32.
31=116+c
Add 32 and 84 to get 116.
116+c=31
Swap sides so that all variable terms are on the left hand side.
c=31-116
Subtract 116 from both sides.
c=-85
Subtract 116 from 31 to get -85.
-2=7-2B-4B
Consider the second equation. Subtract 1 from 8 to get 7.
-2=7-6B
Combine -2B and -4B to get -6B.
7-6B=-2
Swap sides so that all variable terms are on the left hand side.
-6B=-2-7
Subtract 7 from both sides.
-6B=-9
Subtract 7 from -2 to get -9.
B=\frac{-9}{-6}
Divide both sides by -6.
B=\frac{3}{2}
Reduce the fraction \frac{-9}{-6} to lowest terms by extracting and canceling out -3.
c=-85 B=\frac{3}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}