Solve for x, y
x=4
y=2
Graph
Share
Copied to clipboard
300x+400y=2000,4x+5y=26
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
300x+400y=2000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
300x=-400y+2000
Subtract 400y from both sides of the equation.
x=\frac{1}{300}\left(-400y+2000\right)
Divide both sides by 300.
x=-\frac{4}{3}y+\frac{20}{3}
Multiply \frac{1}{300} times -400y+2000.
4\left(-\frac{4}{3}y+\frac{20}{3}\right)+5y=26
Substitute \frac{-4y+20}{3} for x in the other equation, 4x+5y=26.
-\frac{16}{3}y+\frac{80}{3}+5y=26
Multiply 4 times \frac{-4y+20}{3}.
-\frac{1}{3}y+\frac{80}{3}=26
Add -\frac{16y}{3} to 5y.
-\frac{1}{3}y=-\frac{2}{3}
Subtract \frac{80}{3} from both sides of the equation.
y=2
Multiply both sides by -3.
x=-\frac{4}{3}\times 2+\frac{20}{3}
Substitute 2 for y in x=-\frac{4}{3}y+\frac{20}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-8+20}{3}
Multiply -\frac{4}{3} times 2.
x=4
Add \frac{20}{3} to -\frac{8}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=4,y=2
The system is now solved.
300x+400y=2000,4x+5y=26
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}300&400\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2000\\26\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}300&400\\4&5\end{matrix}\right))\left(\begin{matrix}300&400\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}300&400\\4&5\end{matrix}\right))\left(\begin{matrix}2000\\26\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}300&400\\4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}300&400\\4&5\end{matrix}\right))\left(\begin{matrix}2000\\26\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}300&400\\4&5\end{matrix}\right))\left(\begin{matrix}2000\\26\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{300\times 5-400\times 4}&-\frac{400}{300\times 5-400\times 4}\\-\frac{4}{300\times 5-400\times 4}&\frac{300}{300\times 5-400\times 4}\end{matrix}\right)\left(\begin{matrix}2000\\26\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}&4\\\frac{1}{25}&-3\end{matrix}\right)\left(\begin{matrix}2000\\26\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}\times 2000+4\times 26\\\frac{1}{25}\times 2000-3\times 26\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Do the arithmetic.
x=4,y=2
Extract the matrix elements x and y.
300x+400y=2000,4x+5y=26
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4\times 300x+4\times 400y=4\times 2000,300\times 4x+300\times 5y=300\times 26
To make 300x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 300.
1200x+1600y=8000,1200x+1500y=7800
Simplify.
1200x-1200x+1600y-1500y=8000-7800
Subtract 1200x+1500y=7800 from 1200x+1600y=8000 by subtracting like terms on each side of the equal sign.
1600y-1500y=8000-7800
Add 1200x to -1200x. Terms 1200x and -1200x cancel out, leaving an equation with only one variable that can be solved.
100y=8000-7800
Add 1600y to -1500y.
100y=200
Add 8000 to -7800.
y=2
Divide both sides by 100.
4x+5\times 2=26
Substitute 2 for y in 4x+5y=26. Because the resulting equation contains only one variable, you can solve for x directly.
4x+10=26
Multiply 5 times 2.
4x=16
Subtract 10 from both sides of the equation.
x=4
Divide both sides by 4.
x=4,y=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}