Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3y-6-x=0
Consider the first equation. Subtract x from both sides.
3y-x=6
Add 6 to both sides. Anything plus zero gives itself.
x-9-2y=0
Consider the second equation. Subtract 2y from both sides.
x-2y=9
Add 9 to both sides. Anything plus zero gives itself.
3y-x=6,-2y+x=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3y-x=6
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
3y=x+6
Add x to both sides of the equation.
y=\frac{1}{3}\left(x+6\right)
Divide both sides by 3.
y=\frac{1}{3}x+2
Multiply \frac{1}{3} times x+6.
-2\left(\frac{1}{3}x+2\right)+x=9
Substitute \frac{x}{3}+2 for y in the other equation, -2y+x=9.
-\frac{2}{3}x-4+x=9
Multiply -2 times \frac{x}{3}+2.
\frac{1}{3}x-4=9
Add -\frac{2x}{3} to x.
\frac{1}{3}x=13
Add 4 to both sides of the equation.
x=39
Multiply both sides by 3.
y=\frac{1}{3}\times 39+2
Substitute 39 for x in y=\frac{1}{3}x+2. Because the resulting equation contains only one variable, you can solve for y directly.
y=13+2
Multiply \frac{1}{3} times 39.
y=15
Add 2 to 13.
y=15,x=39
The system is now solved.
3y-6-x=0
Consider the first equation. Subtract x from both sides.
3y-x=6
Add 6 to both sides. Anything plus zero gives itself.
x-9-2y=0
Consider the second equation. Subtract 2y from both sides.
x-2y=9
Add 9 to both sides. Anything plus zero gives itself.
3y-x=6,-2y+x=9
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\9\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-1\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-\left(-2\right)\right)}&-\frac{-1}{3-\left(-\left(-2\right)\right)}\\-\frac{-2}{3-\left(-\left(-2\right)\right)}&\frac{3}{3-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6+9\\2\times 6+3\times 9\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}15\\39\end{matrix}\right)
Do the arithmetic.
y=15,x=39
Extract the matrix elements y and x.
3y-6-x=0
Consider the first equation. Subtract x from both sides.
3y-x=6
Add 6 to both sides. Anything plus zero gives itself.
x-9-2y=0
Consider the second equation. Subtract 2y from both sides.
x-2y=9
Add 9 to both sides. Anything plus zero gives itself.
3y-x=6,-2y+x=9
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-2\times 3y-2\left(-1\right)x=-2\times 6,3\left(-2\right)y+3x=3\times 9
To make 3y and -2y equal, multiply all terms on each side of the first equation by -2 and all terms on each side of the second by 3.
-6y+2x=-12,-6y+3x=27
Simplify.
-6y+6y+2x-3x=-12-27
Subtract -6y+3x=27 from -6y+2x=-12 by subtracting like terms on each side of the equal sign.
2x-3x=-12-27
Add -6y to 6y. Terms -6y and 6y cancel out, leaving an equation with only one variable that can be solved.
-x=-12-27
Add 2x to -3x.
-x=-39
Add -12 to -27.
x=39
Divide both sides by -1.
-2y+39=9
Substitute 39 for x in -2y+x=9. Because the resulting equation contains only one variable, you can solve for y directly.
-2y=-30
Subtract 39 from both sides of the equation.
y=15
Divide both sides by -2.
y=15,x=39
The system is now solved.