Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3y-5x=0
Consider the first equation. Subtract 5x from both sides.
9x-12y=0
Consider the second equation. Subtract 12y from both sides.
3y-5x=0,-12y+9x=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3y-5x=0
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
3y=5x
Add 5x to both sides of the equation.
y=\frac{1}{3}\times 5x
Divide both sides by 3.
y=\frac{5}{3}x
Multiply \frac{1}{3} times 5x.
-12\times \frac{5}{3}x+9x=0
Substitute \frac{5x}{3} for y in the other equation, -12y+9x=0.
-20x+9x=0
Multiply -12 times \frac{5x}{3}.
-11x=0
Add -20x to 9x.
x=0
Divide both sides by -11.
y=0
Substitute 0 for x in y=\frac{5}{3}x. Because the resulting equation contains only one variable, you can solve for y directly.
y=0,x=0
The system is now solved.
3y-5x=0
Consider the first equation. Subtract 5x from both sides.
9x-12y=0
Consider the second equation. Subtract 12y from both sides.
3y-5x=0,-12y+9x=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-5\\-12&9\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-5\\-12&9\end{matrix}\right))\left(\begin{matrix}3&-5\\-12&9\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-12&9\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-5\\-12&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-12&9\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-12&9\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{9}{3\times 9-\left(-5\left(-12\right)\right)}&-\frac{-5}{3\times 9-\left(-5\left(-12\right)\right)}\\-\frac{-12}{3\times 9-\left(-5\left(-12\right)\right)}&\frac{3}{3\times 9-\left(-5\left(-12\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{11}&-\frac{5}{33}\\-\frac{4}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Multiply the matrices.
y=0,x=0
Extract the matrix elements y and x.
3y-5x=0
Consider the first equation. Subtract 5x from both sides.
9x-12y=0
Consider the second equation. Subtract 12y from both sides.
3y-5x=0,-12y+9x=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-12\times 3y-12\left(-5\right)x=0,3\left(-12\right)y+3\times 9x=0
To make 3y and -12y equal, multiply all terms on each side of the first equation by -12 and all terms on each side of the second by 3.
-36y+60x=0,-36y+27x=0
Simplify.
-36y+36y+60x-27x=0
Subtract -36y+27x=0 from -36y+60x=0 by subtracting like terms on each side of the equal sign.
60x-27x=0
Add -36y to 36y. Terms -36y and 36y cancel out, leaving an equation with only one variable that can be solved.
33x=0
Add 60x to -27x.
x=0
Divide both sides by 33.
-12y=0
Substitute 0 for x in -12y+9x=0. Because the resulting equation contains only one variable, you can solve for y directly.
y=0
Divide both sides by -12.
y=0,x=0
The system is now solved.