Solve for x_1, x, x_3, x_4
x = -\frac{13}{2} = -6\frac{1}{2} = -6.5
x_{1}=1
x_{3}=\frac{1}{2}=0.5
x_{4}=-1
Share
Copied to clipboard
1+x_{4}=0
Consider the third equation. Insert the known values of variables into the equation.
x_{4}=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-2x_{3}-\left(-1\right)=0
Consider the second equation. Insert the known values of variables into the equation.
-2x_{3}+1=0
Multiply -1 and -1 to get 1.
-2x_{3}=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
x_{3}=\frac{-1}{-2}
Divide both sides by -2.
x_{3}=\frac{1}{2}
Fraction \frac{-1}{-2} can be simplified to \frac{1}{2} by removing the negative sign from both the numerator and the denominator.
3\times 1+x+2+\frac{1}{2}-\left(-1\right)=0
Consider the first equation. Insert the known values of variables into the equation.
3+x+2+\frac{1}{2}+1=0
Do the multiplications.
5+x+\frac{1}{2}+1=0
Add 3 and 2 to get 5.
\frac{11}{2}+x+1=0
Add 5 and \frac{1}{2} to get \frac{11}{2}.
\frac{13}{2}+x=0
Add \frac{11}{2} and 1 to get \frac{13}{2}.
x=-\frac{13}{2}
Subtract \frac{13}{2} from both sides. Anything subtracted from zero gives its negation.
x_{1}=1 x=-\frac{13}{2} x_{3}=\frac{1}{2} x_{4}=-1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}