Solve for x, y, z
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
y=\frac{7}{9}\approx 0.777777778
z=\frac{7}{9}\approx 0.777777778
Share
Copied to clipboard
y=3x+z-5
Solve 3x-y+z=5 for y.
x+3x+z-5+2z=4 x+2\left(3x+z-5\right)+z=4
Substitute 3x+z-5 for y in the second and third equation.
x=\frac{9}{4}-\frac{3}{4}z z=\frac{14}{3}-\frac{7}{3}x
Solve these equations for x and z respectively.
z=\frac{14}{3}-\frac{7}{3}\left(\frac{9}{4}-\frac{3}{4}z\right)
Substitute \frac{9}{4}-\frac{3}{4}z for x in the equation z=\frac{14}{3}-\frac{7}{3}x.
z=\frac{7}{9}
Solve z=\frac{14}{3}-\frac{7}{3}\left(\frac{9}{4}-\frac{3}{4}z\right) for z.
x=\frac{9}{4}-\frac{3}{4}\times \frac{7}{9}
Substitute \frac{7}{9} for z in the equation x=\frac{9}{4}-\frac{3}{4}z.
x=\frac{5}{3}
Calculate x from x=\frac{9}{4}-\frac{3}{4}\times \frac{7}{9}.
y=3\times \frac{5}{3}+\frac{7}{9}-5
Substitute \frac{5}{3} for x and \frac{7}{9} for z in the equation y=3x+z-5.
y=\frac{7}{9}
Calculate y from y=3\times \frac{5}{3}+\frac{7}{9}-5.
x=\frac{5}{3} y=\frac{7}{9} z=\frac{7}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}