Solve for x, y
x = -\frac{30}{11} = -2\frac{8}{11} \approx -2.727272727
y = -\frac{150}{11} = -13\frac{7}{11} \approx -13.636363636
Graph
Share
Copied to clipboard
y-5x=0
Consider the second equation. Subtract 5x from both sides.
3x-5y=60,-5x+y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x-5y=60
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=5y+60
Add 5y to both sides of the equation.
x=\frac{1}{3}\left(5y+60\right)
Divide both sides by 3.
x=\frac{5}{3}y+20
Multiply \frac{1}{3} times 60+5y.
-5\left(\frac{5}{3}y+20\right)+y=0
Substitute 20+\frac{5y}{3} for x in the other equation, -5x+y=0.
-\frac{25}{3}y-100+y=0
Multiply -5 times 20+\frac{5y}{3}.
-\frac{22}{3}y-100=0
Add -\frac{25y}{3} to y.
-\frac{22}{3}y=100
Add 100 to both sides of the equation.
y=-\frac{150}{11}
Divide both sides of the equation by -\frac{22}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{5}{3}\left(-\frac{150}{11}\right)+20
Substitute -\frac{150}{11} for y in x=\frac{5}{3}y+20. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{250}{11}+20
Multiply \frac{5}{3} times -\frac{150}{11} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{30}{11}
Add 20 to -\frac{250}{11}.
x=-\frac{30}{11},y=-\frac{150}{11}
The system is now solved.
y-5x=0
Consider the second equation. Subtract 5x from both sides.
3x-5y=60,-5x+y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-5\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-5\\-5&1\end{matrix}\right))\left(\begin{matrix}3&-5\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-5&1\end{matrix}\right))\left(\begin{matrix}60\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-5\\-5&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-5&1\end{matrix}\right))\left(\begin{matrix}60\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\-5&1\end{matrix}\right))\left(\begin{matrix}60\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-5\left(-5\right)\right)}&-\frac{-5}{3-\left(-5\left(-5\right)\right)}\\-\frac{-5}{3-\left(-5\left(-5\right)\right)}&\frac{3}{3-\left(-5\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}60\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{22}&-\frac{5}{22}\\-\frac{5}{22}&-\frac{3}{22}\end{matrix}\right)\left(\begin{matrix}60\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{22}\times 60\\-\frac{5}{22}\times 60\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{30}{11}\\-\frac{150}{11}\end{matrix}\right)
Do the arithmetic.
x=-\frac{30}{11},y=-\frac{150}{11}
Extract the matrix elements x and y.
y-5x=0
Consider the second equation. Subtract 5x from both sides.
3x-5y=60,-5x+y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-5\times 3x-5\left(-5\right)y=-5\times 60,3\left(-5\right)x+3y=0
To make 3x and -5x equal, multiply all terms on each side of the first equation by -5 and all terms on each side of the second by 3.
-15x+25y=-300,-15x+3y=0
Simplify.
-15x+15x+25y-3y=-300
Subtract -15x+3y=0 from -15x+25y=-300 by subtracting like terms on each side of the equal sign.
25y-3y=-300
Add -15x to 15x. Terms -15x and 15x cancel out, leaving an equation with only one variable that can be solved.
22y=-300
Add 25y to -3y.
y=-\frac{150}{11}
Divide both sides by 22.
-5x-\frac{150}{11}=0
Substitute -\frac{150}{11} for y in -5x+y=0. Because the resulting equation contains only one variable, you can solve for x directly.
-5x=\frac{150}{11}
Add \frac{150}{11} to both sides of the equation.
x=-\frac{30}{11}
Divide both sides by -5.
x=-\frac{30}{11},y=-\frac{150}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}