Solve for x, y, z
x=\frac{31}{54}\approx 0.574074074
y=-\frac{23}{36}\approx -0.638888889
z=\frac{97}{108}\approx 0.898148148
Share
Copied to clipboard
x-3y-5z=-2 3x-2y=3 -2x-4y+4z=5
Reorder the equations.
x=3y+5z-2
Solve x-3y-5z=-2 for x.
3\left(3y+5z-2\right)-2y=3 -2\left(3y+5z-2\right)-4y+4z=5
Substitute 3y+5z-2 for x in the second and third equation.
y=\frac{9}{7}-\frac{15}{7}z z=-\frac{5}{3}y-\frac{1}{6}
Solve these equations for y and z respectively.
z=-\frac{5}{3}\left(\frac{9}{7}-\frac{15}{7}z\right)-\frac{1}{6}
Substitute \frac{9}{7}-\frac{15}{7}z for y in the equation z=-\frac{5}{3}y-\frac{1}{6}.
z=\frac{97}{108}
Solve z=-\frac{5}{3}\left(\frac{9}{7}-\frac{15}{7}z\right)-\frac{1}{6} for z.
y=\frac{9}{7}-\frac{15}{7}\times \frac{97}{108}
Substitute \frac{97}{108} for z in the equation y=\frac{9}{7}-\frac{15}{7}z.
y=-\frac{23}{36}
Calculate y from y=\frac{9}{7}-\frac{15}{7}\times \frac{97}{108}.
x=3\left(-\frac{23}{36}\right)+5\times \frac{97}{108}-2
Substitute -\frac{23}{36} for y and \frac{97}{108} for z in the equation x=3y+5z-2.
x=\frac{31}{54}
Calculate x from x=3\left(-\frac{23}{36}\right)+5\times \frac{97}{108}-2.
x=\frac{31}{54} y=-\frac{23}{36} z=\frac{97}{108}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}