Solve for x, y, t
x = \frac{199}{99} = 2\frac{1}{99} \approx 2.01010101
y = \frac{70}{33} = 2\frac{4}{33} \approx 2.121212121
t=\frac{5}{33}\approx 0.151515152
Graph
Share
Copied to clipboard
x=\frac{2}{3}y-\frac{8}{3}t+1
Solve 3x-2y+8t=3 for x.
6\left(\frac{2}{3}y-\frac{8}{3}t+1\right)-3y+2t=6 9\left(\frac{2}{3}y-\frac{8}{3}t+1\right)-11+6t=8
Substitute \frac{2}{3}y-\frac{8}{3}t+1 for x in the second and third equation.
y=14t t=-\frac{5}{9}+\frac{1}{3}y
Solve these equations for y and t respectively.
t=-\frac{5}{9}+\frac{1}{3}\times 14t
Substitute 14t for y in the equation t=-\frac{5}{9}+\frac{1}{3}y.
t=\frac{5}{33}
Solve t=-\frac{5}{9}+\frac{1}{3}\times 14t for t.
y=14\times \frac{5}{33}
Substitute \frac{5}{33} for t in the equation y=14t.
y=\frac{70}{33}
Calculate y from y=14\times \frac{5}{33}.
x=\frac{2}{3}\times \frac{70}{33}-\frac{8}{3}\times \frac{5}{33}+1
Substitute \frac{70}{33} for y and \frac{5}{33} for t in the equation x=\frac{2}{3}y-\frac{8}{3}t+1.
x=\frac{199}{99}
Calculate x from x=\frac{2}{3}\times \frac{70}{33}-\frac{8}{3}\times \frac{5}{33}+1.
x=\frac{199}{99} y=\frac{70}{33} t=\frac{5}{33}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}