Solve for x
x=\frac{3y}{4}
Graph
Share
Copied to clipboard
3x-9x-y=5y-\left(2x+9y\right)
To find the opposite of 9x+y, find the opposite of each term.
-6x-y=5y-\left(2x+9y\right)
Combine 3x and -9x to get -6x.
-6x-y=5y-2x-9y
To find the opposite of 2x+9y, find the opposite of each term.
-6x-y=-4y-2x
Combine 5y and -9y to get -4y.
-6x-y+2x=-4y
Add 2x to both sides.
-4x-y=-4y
Combine -6x and 2x to get -4x.
-4x=-4y+y
Add y to both sides.
-4x=-3y
Combine -4y and y to get -3y.
\frac{-4x}{-4}=-\frac{3y}{-4}
Divide both sides by -4.
x=-\frac{3y}{-4}
Dividing by -4 undoes the multiplication by -4.
x=\frac{3y}{4}
Divide -3y by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}