Solve for x, y
x = \frac{4954}{9} = 550\frac{4}{9} \approx 550.444444444
y = -\frac{1315}{3} = -438\frac{1}{3} \approx -438.333333333
Graph
Share
Copied to clipboard
3x+y=1213,6x+5y=1111
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+y=1213
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-y+1213
Subtract y from both sides of the equation.
x=\frac{1}{3}\left(-y+1213\right)
Divide both sides by 3.
x=-\frac{1}{3}y+\frac{1213}{3}
Multiply \frac{1}{3} times -y+1213.
6\left(-\frac{1}{3}y+\frac{1213}{3}\right)+5y=1111
Substitute \frac{-y+1213}{3} for x in the other equation, 6x+5y=1111.
-2y+2426+5y=1111
Multiply 6 times \frac{-y+1213}{3}.
3y+2426=1111
Add -2y to 5y.
3y=-1315
Subtract 2426 from both sides of the equation.
y=-\frac{1315}{3}
Divide both sides by 3.
x=-\frac{1}{3}\left(-\frac{1315}{3}\right)+\frac{1213}{3}
Substitute -\frac{1315}{3} for y in x=-\frac{1}{3}y+\frac{1213}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1315}{9}+\frac{1213}{3}
Multiply -\frac{1}{3} times -\frac{1315}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{4954}{9}
Add \frac{1213}{3} to \frac{1315}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{4954}{9},y=-\frac{1315}{3}
The system is now solved.
3x+y=1213,6x+5y=1111
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&1\\6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1213\\1111\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&1\\6&5\end{matrix}\right))\left(\begin{matrix}3&1\\6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&5\end{matrix}\right))\left(\begin{matrix}1213\\1111\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&1\\6&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&5\end{matrix}\right))\left(\begin{matrix}1213\\1111\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&5\end{matrix}\right))\left(\begin{matrix}1213\\1111\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-6}&-\frac{1}{3\times 5-6}\\-\frac{6}{3\times 5-6}&\frac{3}{3\times 5-6}\end{matrix}\right)\left(\begin{matrix}1213\\1111\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}&-\frac{1}{9}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1213\\1111\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}\times 1213-\frac{1}{9}\times 1111\\-\frac{2}{3}\times 1213+\frac{1}{3}\times 1111\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4954}{9}\\-\frac{1315}{3}\end{matrix}\right)
Do the arithmetic.
x=\frac{4954}{9},y=-\frac{1315}{3}
Extract the matrix elements x and y.
3x+y=1213,6x+5y=1111
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6\times 3x+6y=6\times 1213,3\times 6x+3\times 5y=3\times 1111
To make 3x and 6x equal, multiply all terms on each side of the first equation by 6 and all terms on each side of the second by 3.
18x+6y=7278,18x+15y=3333
Simplify.
18x-18x+6y-15y=7278-3333
Subtract 18x+15y=3333 from 18x+6y=7278 by subtracting like terms on each side of the equal sign.
6y-15y=7278-3333
Add 18x to -18x. Terms 18x and -18x cancel out, leaving an equation with only one variable that can be solved.
-9y=7278-3333
Add 6y to -15y.
-9y=3945
Add 7278 to -3333.
y=-\frac{1315}{3}
Divide both sides by -9.
6x+5\left(-\frac{1315}{3}\right)=1111
Substitute -\frac{1315}{3} for y in 6x+5y=1111. Because the resulting equation contains only one variable, you can solve for x directly.
6x-\frac{6575}{3}=1111
Multiply 5 times -\frac{1315}{3}.
6x=\frac{9908}{3}
Add \frac{6575}{3} to both sides of the equation.
x=\frac{4954}{9}
Divide both sides by 6.
x=\frac{4954}{9},y=-\frac{1315}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}