Solve for x, y, z
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
y = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
z = \frac{29}{6} = 4\frac{5}{6} \approx 4.833333333
Share
Copied to clipboard
y=-3x-z-2
Solve 3x+y+z=-2 for y.
x-3x-z-2+z=1 -2x+5\left(-3x-z-2\right)+2z=1
Substitute -3x-z-2 for y in the second and third equation.
x=-\frac{3}{2} z=-\frac{17}{3}x-\frac{11}{3}
Solve these equations for x and z respectively.
z=-\frac{17}{3}\left(-\frac{3}{2}\right)-\frac{11}{3}
Substitute -\frac{3}{2} for x in the equation z=-\frac{17}{3}x-\frac{11}{3}.
z=\frac{29}{6}
Calculate z from z=-\frac{17}{3}\left(-\frac{3}{2}\right)-\frac{11}{3}.
y=-3\left(-\frac{3}{2}\right)-\frac{29}{6}-2
Substitute -\frac{3}{2} for x and \frac{29}{6} for z in the equation y=-3x-z-2.
y=-\frac{7}{3}
Calculate y from y=-3\left(-\frac{3}{2}\right)-\frac{29}{6}-2.
x=-\frac{3}{2} y=-\frac{7}{3} z=\frac{29}{6}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}