Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+9y=75,8x+5y=47
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+9y=75
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-9y+75
Subtract 9y from both sides of the equation.
x=\frac{1}{3}\left(-9y+75\right)
Divide both sides by 3.
x=-3y+25
Multiply \frac{1}{3} times -9y+75.
8\left(-3y+25\right)+5y=47
Substitute -3y+25 for x in the other equation, 8x+5y=47.
-24y+200+5y=47
Multiply 8 times -3y+25.
-19y+200=47
Add -24y to 5y.
-19y=-153
Subtract 200 from both sides of the equation.
y=\frac{153}{19}
Divide both sides by -19.
x=-3\times \frac{153}{19}+25
Substitute \frac{153}{19} for y in x=-3y+25. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{459}{19}+25
Multiply -3 times \frac{153}{19}.
x=\frac{16}{19}
Add 25 to -\frac{459}{19}.
x=\frac{16}{19},y=\frac{153}{19}
The system is now solved.
3x+9y=75,8x+5y=47
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&9\\8&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}75\\47\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&9\\8&5\end{matrix}\right))\left(\begin{matrix}3&9\\8&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&9\\8&5\end{matrix}\right))\left(\begin{matrix}75\\47\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&9\\8&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&9\\8&5\end{matrix}\right))\left(\begin{matrix}75\\47\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&9\\8&5\end{matrix}\right))\left(\begin{matrix}75\\47\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-9\times 8}&-\frac{9}{3\times 5-9\times 8}\\-\frac{8}{3\times 5-9\times 8}&\frac{3}{3\times 5-9\times 8}\end{matrix}\right)\left(\begin{matrix}75\\47\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{57}&\frac{3}{19}\\\frac{8}{57}&-\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}75\\47\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{57}\times 75+\frac{3}{19}\times 47\\\frac{8}{57}\times 75-\frac{1}{19}\times 47\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{19}\\\frac{153}{19}\end{matrix}\right)
Do the arithmetic.
x=\frac{16}{19},y=\frac{153}{19}
Extract the matrix elements x and y.
3x+9y=75,8x+5y=47
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8\times 3x+8\times 9y=8\times 75,3\times 8x+3\times 5y=3\times 47
To make 3x and 8x equal, multiply all terms on each side of the first equation by 8 and all terms on each side of the second by 3.
24x+72y=600,24x+15y=141
Simplify.
24x-24x+72y-15y=600-141
Subtract 24x+15y=141 from 24x+72y=600 by subtracting like terms on each side of the equal sign.
72y-15y=600-141
Add 24x to -24x. Terms 24x and -24x cancel out, leaving an equation with only one variable that can be solved.
57y=600-141
Add 72y to -15y.
57y=459
Add 600 to -141.
y=\frac{153}{19}
Divide both sides by 57.
8x+5\times \frac{153}{19}=47
Substitute \frac{153}{19} for y in 8x+5y=47. Because the resulting equation contains only one variable, you can solve for x directly.
8x+\frac{765}{19}=47
Multiply 5 times \frac{153}{19}.
8x=\frac{128}{19}
Subtract \frac{765}{19} from both sides of the equation.
x=\frac{16}{19}
Divide both sides by 8.
x=\frac{16}{19},y=\frac{153}{19}
The system is now solved.