Solve for x, y
x=15
y=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
3x+6y=42,-7x+8y=-109
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+6y=42
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-6y+42
Subtract 6y from both sides of the equation.
x=\frac{1}{3}\left(-6y+42\right)
Divide both sides by 3.
x=-2y+14
Multiply \frac{1}{3} times -6y+42.
-7\left(-2y+14\right)+8y=-109
Substitute -2y+14 for x in the other equation, -7x+8y=-109.
14y-98+8y=-109
Multiply -7 times -2y+14.
22y-98=-109
Add 14y to 8y.
22y=-11
Add 98 to both sides of the equation.
y=-\frac{1}{2}
Divide both sides by 22.
x=-2\left(-\frac{1}{2}\right)+14
Substitute -\frac{1}{2} for y in x=-2y+14. Because the resulting equation contains only one variable, you can solve for x directly.
x=1+14
Multiply -2 times -\frac{1}{2}.
x=15
Add 14 to 1.
x=15,y=-\frac{1}{2}
The system is now solved.
3x+6y=42,-7x+8y=-109
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&6\\-7&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}42\\-109\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&6\\-7&8\end{matrix}\right))\left(\begin{matrix}3&6\\-7&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\-7&8\end{matrix}\right))\left(\begin{matrix}42\\-109\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&6\\-7&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\-7&8\end{matrix}\right))\left(\begin{matrix}42\\-109\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\-7&8\end{matrix}\right))\left(\begin{matrix}42\\-109\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3\times 8-6\left(-7\right)}&-\frac{6}{3\times 8-6\left(-7\right)}\\-\frac{-7}{3\times 8-6\left(-7\right)}&\frac{3}{3\times 8-6\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}42\\-109\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{33}&-\frac{1}{11}\\\frac{7}{66}&\frac{1}{22}\end{matrix}\right)\left(\begin{matrix}42\\-109\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{33}\times 42-\frac{1}{11}\left(-109\right)\\\frac{7}{66}\times 42+\frac{1}{22}\left(-109\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-\frac{1}{2}\end{matrix}\right)
Do the arithmetic.
x=15,y=-\frac{1}{2}
Extract the matrix elements x and y.
3x+6y=42,-7x+8y=-109
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-7\times 3x-7\times 6y=-7\times 42,3\left(-7\right)x+3\times 8y=3\left(-109\right)
To make 3x and -7x equal, multiply all terms on each side of the first equation by -7 and all terms on each side of the second by 3.
-21x-42y=-294,-21x+24y=-327
Simplify.
-21x+21x-42y-24y=-294+327
Subtract -21x+24y=-327 from -21x-42y=-294 by subtracting like terms on each side of the equal sign.
-42y-24y=-294+327
Add -21x to 21x. Terms -21x and 21x cancel out, leaving an equation with only one variable that can be solved.
-66y=-294+327
Add -42y to -24y.
-66y=33
Add -294 to 327.
y=-\frac{1}{2}
Divide both sides by -66.
-7x+8\left(-\frac{1}{2}\right)=-109
Substitute -\frac{1}{2} for y in -7x+8y=-109. Because the resulting equation contains only one variable, you can solve for x directly.
-7x-4=-109
Multiply 8 times -\frac{1}{2}.
-7x=-105
Add 4 to both sides of the equation.
x=15
Divide both sides by -7.
x=15,y=-\frac{1}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}