Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

z=3x+4y-1
Solve 3x+4y-z=1 for z.
5\left(3x+4y-1\right)-9y=5 9y-x+8\left(3x+4y-1\right)=1
Substitute 3x+4y-1 for z in the second and third equation.
y=\frac{10}{11}-\frac{15}{11}x x=-\frac{41}{23}y+\frac{9}{23}
Solve these equations for y and x respectively.
x=-\frac{41}{23}\left(\frac{10}{11}-\frac{15}{11}x\right)+\frac{9}{23}
Substitute \frac{10}{11}-\frac{15}{11}x for y in the equation x=-\frac{41}{23}y+\frac{9}{23}.
x=\frac{311}{362}
Solve x=-\frac{41}{23}\left(\frac{10}{11}-\frac{15}{11}x\right)+\frac{9}{23} for x.
y=\frac{10}{11}-\frac{15}{11}\times \frac{311}{362}
Substitute \frac{311}{362} for x in the equation y=\frac{10}{11}-\frac{15}{11}x.
y=-\frac{95}{362}
Calculate y from y=\frac{10}{11}-\frac{15}{11}\times \frac{311}{362}.
z=3\times \frac{311}{362}+4\left(-\frac{95}{362}\right)-1
Substitute -\frac{95}{362} for y and \frac{311}{362} for x in the equation z=3x+4y-1.
z=\frac{191}{362}
Calculate z from z=3\times \frac{311}{362}+4\left(-\frac{95}{362}\right)-1.
x=\frac{311}{362} y=-\frac{95}{362} z=\frac{191}{362}
The system is now solved.