Solve for x, y, z
x=\frac{311}{362}\approx 0.859116022
y=-\frac{95}{362}\approx -0.262430939
z=\frac{191}{362}\approx 0.527624309
Share
Copied to clipboard
z=3x+4y-1
Solve 3x+4y-z=1 for z.
5\left(3x+4y-1\right)-9y=5 9y-x+8\left(3x+4y-1\right)=1
Substitute 3x+4y-1 for z in the second and third equation.
y=\frac{10}{11}-\frac{15}{11}x x=-\frac{41}{23}y+\frac{9}{23}
Solve these equations for y and x respectively.
x=-\frac{41}{23}\left(\frac{10}{11}-\frac{15}{11}x\right)+\frac{9}{23}
Substitute \frac{10}{11}-\frac{15}{11}x for y in the equation x=-\frac{41}{23}y+\frac{9}{23}.
x=\frac{311}{362}
Solve x=-\frac{41}{23}\left(\frac{10}{11}-\frac{15}{11}x\right)+\frac{9}{23} for x.
y=\frac{10}{11}-\frac{15}{11}\times \frac{311}{362}
Substitute \frac{311}{362} for x in the equation y=\frac{10}{11}-\frac{15}{11}x.
y=-\frac{95}{362}
Calculate y from y=\frac{10}{11}-\frac{15}{11}\times \frac{311}{362}.
z=3\times \frac{311}{362}+4\left(-\frac{95}{362}\right)-1
Substitute -\frac{95}{362} for y and \frac{311}{362} for x in the equation z=3x+4y-1.
z=\frac{191}{362}
Calculate z from z=3\times \frac{311}{362}+4\left(-\frac{95}{362}\right)-1.
x=\frac{311}{362} y=-\frac{95}{362} z=\frac{191}{362}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}