Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+4y=5150,4x+3y=5000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+4y=5150
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-4y+5150
Subtract 4y from both sides of the equation.
x=\frac{1}{3}\left(-4y+5150\right)
Divide both sides by 3.
x=-\frac{4}{3}y+\frac{5150}{3}
Multiply \frac{1}{3} times -4y+5150.
4\left(-\frac{4}{3}y+\frac{5150}{3}\right)+3y=5000
Substitute \frac{-4y+5150}{3} for x in the other equation, 4x+3y=5000.
-\frac{16}{3}y+\frac{20600}{3}+3y=5000
Multiply 4 times \frac{-4y+5150}{3}.
-\frac{7}{3}y+\frac{20600}{3}=5000
Add -\frac{16y}{3} to 3y.
-\frac{7}{3}y=-\frac{5600}{3}
Subtract \frac{20600}{3} from both sides of the equation.
y=800
Divide both sides of the equation by -\frac{7}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{4}{3}\times 800+\frac{5150}{3}
Substitute 800 for y in x=-\frac{4}{3}y+\frac{5150}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-3200+5150}{3}
Multiply -\frac{4}{3} times 800.
x=650
Add \frac{5150}{3} to -\frac{3200}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=650,y=800
The system is now solved.
3x+4y=5150,4x+3y=5000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&4\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5150\\5000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}3&4\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}5150\\5000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&4\\4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}5150\\5000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&3\end{matrix}\right))\left(\begin{matrix}5150\\5000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-4\times 4}&-\frac{4}{3\times 3-4\times 4}\\-\frac{4}{3\times 3-4\times 4}&\frac{3}{3\times 3-4\times 4}\end{matrix}\right)\left(\begin{matrix}5150\\5000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}&\frac{4}{7}\\\frac{4}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}5150\\5000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{7}\times 5150+\frac{4}{7}\times 5000\\\frac{4}{7}\times 5150-\frac{3}{7}\times 5000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}650\\800\end{matrix}\right)
Do the arithmetic.
x=650,y=800
Extract the matrix elements x and y.
3x+4y=5150,4x+3y=5000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4\times 3x+4\times 4y=4\times 5150,3\times 4x+3\times 3y=3\times 5000
To make 3x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 3.
12x+16y=20600,12x+9y=15000
Simplify.
12x-12x+16y-9y=20600-15000
Subtract 12x+9y=15000 from 12x+16y=20600 by subtracting like terms on each side of the equal sign.
16y-9y=20600-15000
Add 12x to -12x. Terms 12x and -12x cancel out, leaving an equation with only one variable that can be solved.
7y=20600-15000
Add 16y to -9y.
7y=5600
Add 20600 to -15000.
y=800
Divide both sides by 7.
4x+3\times 800=5000
Substitute 800 for y in 4x+3y=5000. Because the resulting equation contains only one variable, you can solve for x directly.
4x+2400=5000
Multiply 3 times 800.
4x=2600
Subtract 2400 from both sides of the equation.
x=650
Divide both sides by 4.
x=650,y=800
The system is now solved.