Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y-5x=0
Consider the second equation. Subtract 5x from both sides.
3x+4y=253,-5x+y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+4y=253
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-4y+253
Subtract 4y from both sides of the equation.
x=\frac{1}{3}\left(-4y+253\right)
Divide both sides by 3.
x=-\frac{4}{3}y+\frac{253}{3}
Multiply \frac{1}{3} times -4y+253.
-5\left(-\frac{4}{3}y+\frac{253}{3}\right)+y=0
Substitute \frac{-4y+253}{3} for x in the other equation, -5x+y=0.
\frac{20}{3}y-\frac{1265}{3}+y=0
Multiply -5 times \frac{-4y+253}{3}.
\frac{23}{3}y-\frac{1265}{3}=0
Add \frac{20y}{3} to y.
\frac{23}{3}y=\frac{1265}{3}
Add \frac{1265}{3} to both sides of the equation.
y=55
Divide both sides of the equation by \frac{23}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{4}{3}\times 55+\frac{253}{3}
Substitute 55 for y in x=-\frac{4}{3}y+\frac{253}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-220+253}{3}
Multiply -\frac{4}{3} times 55.
x=11
Add \frac{253}{3} to -\frac{220}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=11,y=55
The system is now solved.
y-5x=0
Consider the second equation. Subtract 5x from both sides.
3x+4y=253,-5x+y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&4\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}253\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}3&4\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}253\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&4\\-5&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}253\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}253\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-4\left(-5\right)}&-\frac{4}{3-4\left(-5\right)}\\-\frac{-5}{3-4\left(-5\right)}&\frac{3}{3-4\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}253\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{23}&-\frac{4}{23}\\\frac{5}{23}&\frac{3}{23}\end{matrix}\right)\left(\begin{matrix}253\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{23}\times 253\\\frac{5}{23}\times 253\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\55\end{matrix}\right)
Do the arithmetic.
x=11,y=55
Extract the matrix elements x and y.
y-5x=0
Consider the second equation. Subtract 5x from both sides.
3x+4y=253,-5x+y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-5\times 3x-5\times 4y=-5\times 253,3\left(-5\right)x+3y=0
To make 3x and -5x equal, multiply all terms on each side of the first equation by -5 and all terms on each side of the second by 3.
-15x-20y=-1265,-15x+3y=0
Simplify.
-15x+15x-20y-3y=-1265
Subtract -15x+3y=0 from -15x-20y=-1265 by subtracting like terms on each side of the equal sign.
-20y-3y=-1265
Add -15x to 15x. Terms -15x and 15x cancel out, leaving an equation with only one variable that can be solved.
-23y=-1265
Add -20y to -3y.
y=55
Divide both sides by -23.
-5x+55=0
Substitute 55 for y in -5x+y=0. Because the resulting equation contains only one variable, you can solve for x directly.
-5x=-55
Subtract 55 from both sides of the equation.
x=11
Divide both sides by -5.
x=11,y=55
The system is now solved.