Solve for x, y
x=3
y=4
Graph
Share
Copied to clipboard
3x+4y=25,y^{2}+x^{2}=25
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+4y=25
Solve 3x+4y=25 for x by isolating x on the left hand side of the equal sign.
3x=-4y+25
Subtract 4y from both sides of the equation.
x=-\frac{4}{3}y+\frac{25}{3}
Divide both sides by 3.
y^{2}+\left(-\frac{4}{3}y+\frac{25}{3}\right)^{2}=25
Substitute -\frac{4}{3}y+\frac{25}{3} for x in the other equation, y^{2}+x^{2}=25.
y^{2}+\frac{16}{9}y^{2}-\frac{200}{9}y+\frac{625}{9}=25
Square -\frac{4}{3}y+\frac{25}{3}.
\frac{25}{9}y^{2}-\frac{200}{9}y+\frac{625}{9}=25
Add y^{2} to \frac{16}{9}y^{2}.
\frac{25}{9}y^{2}-\frac{200}{9}y+\frac{400}{9}=0
Subtract 25 from both sides of the equation.
y=\frac{-\left(-\frac{200}{9}\right)±\sqrt{\left(-\frac{200}{9}\right)^{2}-4\times \frac{25}{9}\times \frac{400}{9}}}{2\times \frac{25}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-\frac{4}{3}\right)^{2} for a, 1\times \frac{25}{3}\left(-\frac{4}{3}\right)\times 2 for b, and \frac{400}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{200}{9}\right)±\sqrt{\frac{40000}{81}-4\times \frac{25}{9}\times \frac{400}{9}}}{2\times \frac{25}{9}}
Square 1\times \frac{25}{3}\left(-\frac{4}{3}\right)\times 2.
y=\frac{-\left(-\frac{200}{9}\right)±\sqrt{\frac{40000}{81}-\frac{100}{9}\times \frac{400}{9}}}{2\times \frac{25}{9}}
Multiply -4 times 1+1\left(-\frac{4}{3}\right)^{2}.
y=\frac{-\left(-\frac{200}{9}\right)±\sqrt{\frac{40000-40000}{81}}}{2\times \frac{25}{9}}
Multiply -\frac{100}{9} times \frac{400}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{200}{9}\right)±\sqrt{0}}{2\times \frac{25}{9}}
Add \frac{40000}{81} to -\frac{40000}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=-\frac{-\frac{200}{9}}{2\times \frac{25}{9}}
Take the square root of 0.
y=\frac{\frac{200}{9}}{2\times \frac{25}{9}}
The opposite of 1\times \frac{25}{3}\left(-\frac{4}{3}\right)\times 2 is \frac{200}{9}.
y=\frac{\frac{200}{9}}{\frac{50}{9}}
Multiply 2 times 1+1\left(-\frac{4}{3}\right)^{2}.
y=4
Divide \frac{200}{9} by \frac{50}{9} by multiplying \frac{200}{9} by the reciprocal of \frac{50}{9}.
x=-\frac{4}{3}\times 4+\frac{25}{3}
There are two solutions for y: 4 and 4. Substitute 4 for y in the equation x=-\frac{4}{3}y+\frac{25}{3} to find the corresponding solution for x that satisfies both equations.
x=\frac{-16+25}{3}
Multiply -\frac{4}{3} times 4.
x=3
Add -\frac{4}{3}\times 4 to \frac{25}{3}.
x=3,y=4\text{ or }x=3,y=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}