Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+4y=1000,x+y=50
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+4y=1000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-4y+1000
Subtract 4y from both sides of the equation.
x=\frac{1}{3}\left(-4y+1000\right)
Divide both sides by 3.
x=-\frac{4}{3}y+\frac{1000}{3}
Multiply \frac{1}{3} times -4y+1000.
-\frac{4}{3}y+\frac{1000}{3}+y=50
Substitute \frac{-4y+1000}{3} for x in the other equation, x+y=50.
-\frac{1}{3}y+\frac{1000}{3}=50
Add -\frac{4y}{3} to y.
-\frac{1}{3}y=-\frac{850}{3}
Subtract \frac{1000}{3} from both sides of the equation.
y=850
Multiply both sides by -3.
x=-\frac{4}{3}\times 850+\frac{1000}{3}
Substitute 850 for y in x=-\frac{4}{3}y+\frac{1000}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-3400+1000}{3}
Multiply -\frac{4}{3} times 850.
x=-800
Add \frac{1000}{3} to -\frac{3400}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-800,y=850
The system is now solved.
3x+4y=1000,x+y=50
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1000\\50\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}3&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}1000\\50\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&4\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}1000\\50\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}1000\\50\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-4}&-\frac{4}{3-4}\\-\frac{1}{3-4}&\frac{3}{3-4}\end{matrix}\right)\left(\begin{matrix}1000\\50\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&4\\1&-3\end{matrix}\right)\left(\begin{matrix}1000\\50\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1000+4\times 50\\1000-3\times 50\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-800\\850\end{matrix}\right)
Do the arithmetic.
x=-800,y=850
Extract the matrix elements x and y.
3x+4y=1000,x+y=50
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x+4y=1000,3x+3y=3\times 50
To make 3x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 3.
3x+4y=1000,3x+3y=150
Simplify.
3x-3x+4y-3y=1000-150
Subtract 3x+3y=150 from 3x+4y=1000 by subtracting like terms on each side of the equal sign.
4y-3y=1000-150
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
y=1000-150
Add 4y to -3y.
y=850
Add 1000 to -150.
x+850=50
Substitute 850 for y in x+y=50. Because the resulting equation contains only one variable, you can solve for x directly.
x=-800
Subtract 850 from both sides of the equation.
x=-800,y=850
The system is now solved.