Solve for x, y (complex solution)
x=\frac{\sqrt{288-m^{2}}-m}{6}\text{, }y=\frac{-\sqrt{288-m^{2}}-m}{8}
x=\frac{-\sqrt{288-m^{2}}-m}{6}\text{, }y=\frac{\sqrt{288-m^{2}}-m}{8}
Solve for x, y
x=\frac{\sqrt{288-m^{2}}-m}{6}\text{, }y=\frac{-\sqrt{288-m^{2}}-m}{8}
x=\frac{-\sqrt{288-m^{2}}-m}{6}\text{, }y=\frac{\sqrt{288-m^{2}}-m}{8}\text{, }|m|\leq 12\sqrt{2}
Graph
Share
Copied to clipboard
3x+4y+m=0
Solve 3x+4y+m=0 for x by isolating x on the left hand side of the equal sign.
3x+4y=-m
Subtract m from both sides of the equation.
3x=-4y-m
Subtract 4y from both sides of the equation.
x=-\frac{4}{3}y-\frac{m}{3}
Divide both sides by 3.
16y^{2}+9\left(-\frac{4}{3}y-\frac{m}{3}\right)^{2}=144
Substitute -\frac{4}{3}y-\frac{m}{3} for x in the other equation, 16y^{2}+9x^{2}=144.
16y^{2}+9\left(\frac{16}{9}y^{2}+\left(-\frac{8}{3}\left(-\frac{m}{3}\right)\right)y+\left(-\frac{m}{3}\right)^{2}\right)=144
Square -\frac{4}{3}y-\frac{m}{3}.
16y^{2}+16y^{2}+\left(-24\left(-\frac{m}{3}\right)\right)y+9\left(-\frac{m}{3}\right)^{2}=144
Multiply 9 times \frac{16}{9}y^{2}+\left(-\frac{8}{3}\left(-\frac{m}{3}\right)\right)y+\left(-\frac{m}{3}\right)^{2}.
32y^{2}+\left(-24\left(-\frac{m}{3}\right)\right)y+9\left(-\frac{m}{3}\right)^{2}=144
Add 16y^{2} to 16y^{2}.
32y^{2}+\left(-24\left(-\frac{m}{3}\right)\right)y+9\left(-\frac{m}{3}\right)^{2}-144=0
Subtract 144 from both sides of the equation.
y=\frac{-\left(-24\left(-\frac{m}{3}\right)\right)±\sqrt{\left(-24\left(-\frac{m}{3}\right)\right)^{2}-4\times 32\left(m^{2}-144\right)}}{2\times 32}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16+9\left(-\frac{4}{3}\right)^{2} for a, 9\left(-\frac{4}{3}\right)\times 2\left(-\frac{m}{3}\right) for b, and -144+m^{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-24\left(-\frac{m}{3}\right)\right)±\sqrt{64m^{2}-4\times 32\left(m^{2}-144\right)}}{2\times 32}
Square 9\left(-\frac{4}{3}\right)\times 2\left(-\frac{m}{3}\right).
y=\frac{-\left(-24\left(-\frac{m}{3}\right)\right)±\sqrt{64m^{2}-128\left(m^{2}-144\right)}}{2\times 32}
Multiply -4 times 16+9\left(-\frac{4}{3}\right)^{2}.
y=\frac{-\left(-24\left(-\frac{m}{3}\right)\right)±\sqrt{64m^{2}+18432-128m^{2}}}{2\times 32}
Multiply -128 times -144+m^{2}.
y=\frac{-\left(-24\left(-\frac{m}{3}\right)\right)±\sqrt{18432-64m^{2}}}{2\times 32}
Add 64m^{2} to 18432-128m^{2}.
y=\frac{-\left(-24\left(-\frac{m}{3}\right)\right)±8\sqrt{288-m^{2}}}{2\times 32}
Take the square root of 18432-64m^{2}.
y=\frac{-8m±8\sqrt{288-m^{2}}}{64}
Multiply 2 times 16+9\left(-\frac{4}{3}\right)^{2}.
y=\frac{8\sqrt{288-m^{2}}-8m}{64}
Now solve the equation y=\frac{-8m±8\sqrt{288-m^{2}}}{64} when ± is plus. Add -8m to 8\sqrt{288-m^{2}}.
y=\frac{\sqrt{288-m^{2}}-m}{8}
Divide -8m+8\sqrt{288-m^{2}} by 64.
y=\frac{-8\sqrt{288-m^{2}}-8m}{64}
Now solve the equation y=\frac{-8m±8\sqrt{288-m^{2}}}{64} when ± is minus. Subtract 8\sqrt{288-m^{2}} from -8m.
y=\frac{-\sqrt{288-m^{2}}-m}{8}
Divide -8m-8\sqrt{288-m^{2}} by 64.
x=-\frac{4}{3}\times \frac{\sqrt{288-m^{2}}-m}{8}-\frac{m}{3}
There are two solutions for y: \frac{-m+\sqrt{288-m^{2}}}{8} and \frac{-m-\sqrt{288-m^{2}}}{8}. Substitute \frac{-m+\sqrt{288-m^{2}}}{8} for y in the equation x=-\frac{4}{3}y-\frac{m}{3} to find the corresponding solution for x that satisfies both equations.
x=\frac{-4\times \frac{\sqrt{288-m^{2}}-m}{8}-m}{3}
Multiply -\frac{4}{3} times \frac{-m+\sqrt{288-m^{2}}}{8}.
x=-\frac{4}{3}\times \frac{-\sqrt{288-m^{2}}-m}{8}-\frac{m}{3}
Now substitute \frac{-m-\sqrt{288-m^{2}}}{8} for y in the equation x=-\frac{4}{3}y-\frac{m}{3} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{-4\times \frac{-\sqrt{288-m^{2}}-m}{8}-m}{3}
Multiply -\frac{4}{3} times \frac{-m-\sqrt{288-m^{2}}}{8}.
x=\frac{-4\times \frac{\sqrt{288-m^{2}}-m}{8}-m}{3},y=\frac{\sqrt{288-m^{2}}-m}{8}\text{ or }x=\frac{-4\times \frac{-\sqrt{288-m^{2}}-m}{8}-m}{3},y=\frac{-\sqrt{288-m^{2}}-m}{8}
The system is now solved.
3x+4y+m=0,16y^{2}+9x^{2}=144
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+4y+m=0
Solve 3x+4y+m=0 for x by isolating x on the left hand side of the equal sign.
3x+4y=-m
Subtract m from both sides of the equation.
3x=-4y-m
Subtract 4y from both sides of the equation.
x=-\frac{4}{3}y-\frac{m}{3}
Divide both sides by 3.
16y^{2}+9\left(-\frac{4}{3}y-\frac{m}{3}\right)^{2}=144
Substitute -\frac{4}{3}y-\frac{m}{3} for x in the other equation, 16y^{2}+9x^{2}=144.
16y^{2}+9\left(\frac{16}{9}y^{2}+\left(-\frac{8}{3}\left(-\frac{m}{3}\right)\right)y+\left(-\frac{m}{3}\right)^{2}\right)=144
Square -\frac{4}{3}y-\frac{m}{3}.
16y^{2}+16y^{2}+\left(-24\left(-\frac{m}{3}\right)\right)y+9\left(-\frac{m}{3}\right)^{2}=144
Multiply 9 times \frac{16}{9}y^{2}+\left(-\frac{8}{3}\left(-\frac{m}{3}\right)\right)y+\left(-\frac{m}{3}\right)^{2}.
32y^{2}+\left(-24\left(-\frac{m}{3}\right)\right)y+9\left(-\frac{m}{3}\right)^{2}=144
Add 16y^{2} to 16y^{2}.
32y^{2}+\left(-24\left(-\frac{m}{3}\right)\right)y+9\left(-\frac{m}{3}\right)^{2}-144=0
Subtract 144 from both sides of the equation.
y=\frac{-\left(-24\left(-\frac{m}{3}\right)\right)±\sqrt{\left(-24\left(-\frac{m}{3}\right)\right)^{2}-4\times 32\left(m^{2}-144\right)}}{2\times 32}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16+9\left(-\frac{4}{3}\right)^{2} for a, 9\left(-\frac{4}{3}\right)\times 2\left(-\frac{m}{3}\right) for b, and -144+m^{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-24\left(-\frac{m}{3}\right)\right)±\sqrt{64m^{2}-4\times 32\left(m^{2}-144\right)}}{2\times 32}
Square 9\left(-\frac{4}{3}\right)\times 2\left(-\frac{m}{3}\right).
y=\frac{-\left(-24\left(-\frac{m}{3}\right)\right)±\sqrt{64m^{2}-128\left(m^{2}-144\right)}}{2\times 32}
Multiply -4 times 16+9\left(-\frac{4}{3}\right)^{2}.
y=\frac{-\left(-24\left(-\frac{m}{3}\right)\right)±\sqrt{64m^{2}+18432-128m^{2}}}{2\times 32}
Multiply -128 times -144+m^{2}.
y=\frac{-\left(-24\left(-\frac{m}{3}\right)\right)±\sqrt{18432-64m^{2}}}{2\times 32}
Add 64m^{2} to 18432-128m^{2}.
y=\frac{-\left(-24\left(-\frac{m}{3}\right)\right)±8\sqrt{288-m^{2}}}{2\times 32}
Take the square root of 18432-64m^{2}.
y=\frac{-8m±8\sqrt{288-m^{2}}}{64}
Multiply 2 times 16+9\left(-\frac{4}{3}\right)^{2}.
y=\frac{8\sqrt{288-m^{2}}-8m}{64}
Now solve the equation y=\frac{-8m±8\sqrt{288-m^{2}}}{64} when ± is plus. Add -8m to 8\sqrt{288-m^{2}}.
y=\frac{\sqrt{288-m^{2}}-m}{8}
Divide -8m+8\sqrt{288-m^{2}} by 64.
y=\frac{-8\sqrt{288-m^{2}}-8m}{64}
Now solve the equation y=\frac{-8m±8\sqrt{288-m^{2}}}{64} when ± is minus. Subtract 8\sqrt{288-m^{2}} from -8m.
y=\frac{-\sqrt{288-m^{2}}-m}{8}
Divide -8m-8\sqrt{288-m^{2}} by 64.
x=-\frac{4}{3}\times \frac{\sqrt{288-m^{2}}-m}{8}-\frac{m}{3}
There are two solutions for y: \frac{-m+\sqrt{288-m^{2}}}{8} and \frac{-m-\sqrt{288-m^{2}}}{8}. Substitute \frac{-m+\sqrt{288-m^{2}}}{8} for y in the equation x=-\frac{4}{3}y-\frac{m}{3} to find the corresponding solution for x that satisfies both equations.
x=\frac{-4\times \frac{\sqrt{288-m^{2}}-m}{8}-m}{3}
Multiply -\frac{4}{3} times \frac{-m+\sqrt{288-m^{2}}}{8}.
x=-\frac{4}{3}\times \frac{-\sqrt{288-m^{2}}-m}{8}-\frac{m}{3}
Now substitute \frac{-m-\sqrt{288-m^{2}}}{8} for y in the equation x=-\frac{4}{3}y-\frac{m}{3} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{-4\times \frac{-\sqrt{288-m^{2}}-m}{8}-m}{3}
Multiply -\frac{4}{3} times \frac{-m-\sqrt{288-m^{2}}}{8}.
x=\frac{-4\times \frac{\sqrt{288-m^{2}}-m}{8}-m}{3},y=\frac{\sqrt{288-m^{2}}-m}{8}\text{ or }x=\frac{-4\times \frac{-\sqrt{288-m^{2}}-m}{8}-m}{3},y=\frac{-\sqrt{288-m^{2}}-m}{8}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}