Solve for x, y
x=225
y=125
Graph
Share
Copied to clipboard
3x+3y=1050,2x+4y=950
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+3y=1050
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-3y+1050
Subtract 3y from both sides of the equation.
x=\frac{1}{3}\left(-3y+1050\right)
Divide both sides by 3.
x=-y+350
Multiply \frac{1}{3} times -3y+1050.
2\left(-y+350\right)+4y=950
Substitute -y+350 for x in the other equation, 2x+4y=950.
-2y+700+4y=950
Multiply 2 times -y+350.
2y+700=950
Add -2y to 4y.
2y=250
Subtract 700 from both sides of the equation.
y=125
Divide both sides by 2.
x=-125+350
Substitute 125 for y in x=-y+350. Because the resulting equation contains only one variable, you can solve for x directly.
x=225
Add 350 to -125.
x=225,y=125
The system is now solved.
3x+3y=1050,2x+4y=950
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&3\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1050\\950\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&3\\2&4\end{matrix}\right))\left(\begin{matrix}3&3\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\2&4\end{matrix}\right))\left(\begin{matrix}1050\\950\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&3\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\2&4\end{matrix}\right))\left(\begin{matrix}1050\\950\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\2&4\end{matrix}\right))\left(\begin{matrix}1050\\950\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-3\times 2}&-\frac{3}{3\times 4-3\times 2}\\-\frac{2}{3\times 4-3\times 2}&\frac{3}{3\times 4-3\times 2}\end{matrix}\right)\left(\begin{matrix}1050\\950\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&-\frac{1}{2}\\-\frac{1}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1050\\950\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 1050-\frac{1}{2}\times 950\\-\frac{1}{3}\times 1050+\frac{1}{2}\times 950\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}225\\125\end{matrix}\right)
Do the arithmetic.
x=225,y=125
Extract the matrix elements x and y.
3x+3y=1050,2x+4y=950
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2\times 3x+2\times 3y=2\times 1050,3\times 2x+3\times 4y=3\times 950
To make 3x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 3.
6x+6y=2100,6x+12y=2850
Simplify.
6x-6x+6y-12y=2100-2850
Subtract 6x+12y=2850 from 6x+6y=2100 by subtracting like terms on each side of the equal sign.
6y-12y=2100-2850
Add 6x to -6x. Terms 6x and -6x cancel out, leaving an equation with only one variable that can be solved.
-6y=2100-2850
Add 6y to -12y.
-6y=-750
Add 2100 to -2850.
y=125
Divide both sides by -6.
2x+4\times 125=950
Substitute 125 for y in 2x+4y=950. Because the resulting equation contains only one variable, you can solve for x directly.
2x+500=950
Multiply 4 times 125.
2x=450
Subtract 500 from both sides of the equation.
x=225
Divide both sides by 2.
x=225,y=125
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}