Solve for x, y, z
x = \frac{269}{11} = 24\frac{5}{11} \approx 24.454545455
y = \frac{31}{11} = 2\frac{9}{11} \approx 2.818181818
z = \frac{265}{11} = 24\frac{1}{11} \approx 24.090909091
Share
Copied to clipboard
x+3y+z=60-3 3x+2y=85-6 3x+3y+2z=130-0
Reorder the equations.
x=-3y-z+57
Solve x+3y+z=60-3 for x.
3\left(-3y-z+57\right)+2y=85-6 3\left(-3y-z+57\right)+3y+2z=130-0
Substitute -3y-z+57 for x in the second and third equation.
y=-\frac{3}{7}z+\frac{92}{7} z=-6y+41
Solve these equations for y and z respectively.
z=-6\left(-\frac{3}{7}z+\frac{92}{7}\right)+41
Substitute -\frac{3}{7}z+\frac{92}{7} for y in the equation z=-6y+41.
z=\frac{265}{11}
Solve z=-6\left(-\frac{3}{7}z+\frac{92}{7}\right)+41 for z.
y=-\frac{3}{7}\times \frac{265}{11}+\frac{92}{7}
Substitute \frac{265}{11} for z in the equation y=-\frac{3}{7}z+\frac{92}{7}.
y=\frac{31}{11}
Calculate y from y=-\frac{3}{7}\times \frac{265}{11}+\frac{92}{7}.
x=-3\times \frac{31}{11}-\frac{265}{11}+57
Substitute \frac{31}{11} for y and \frac{265}{11} for z in the equation x=-3y-z+57.
x=\frac{269}{11}
Calculate x from x=-3\times \frac{31}{11}-\frac{265}{11}+57.
x=\frac{269}{11} y=\frac{31}{11} z=\frac{265}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}