Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+2y-4y=0
Consider the first equation. Subtract 4y from both sides.
3x-2y=0
Combine 2y and -4y to get -2y.
9x+3y-2y=0
Consider the second equation. Subtract 2y from both sides.
9x+y=0
Combine 3y and -2y to get y.
3x-2y=0,9x+y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x-2y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=2y
Add 2y to both sides of the equation.
x=\frac{1}{3}\times 2y
Divide both sides by 3.
x=\frac{2}{3}y
Multiply \frac{1}{3} times 2y.
9\times \frac{2}{3}y+y=0
Substitute \frac{2y}{3} for x in the other equation, 9x+y=0.
6y+y=0
Multiply 9 times \frac{2y}{3}.
7y=0
Add 6y to y.
y=0
Divide both sides by 7.
x=0
Substitute 0 for y in x=\frac{2}{3}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=0,y=0
The system is now solved.
3x+2y-4y=0
Consider the first equation. Subtract 4y from both sides.
3x-2y=0
Combine 2y and -4y to get -2y.
9x+3y-2y=0
Consider the second equation. Subtract 2y from both sides.
9x+y=0
Combine 3y and -2y to get y.
3x-2y=0,9x+y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-2\\9&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-2\\9&1\end{matrix}\right))\left(\begin{matrix}3&-2\\9&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\9&1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-2\\9&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\9&1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\9&1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\times 9\right)}&-\frac{-2}{3-\left(-2\times 9\right)}\\-\frac{9}{3-\left(-2\times 9\right)}&\frac{3}{3-\left(-2\times 9\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{21}&\frac{2}{21}\\-\frac{3}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Multiply the matrices.
x=0,y=0
Extract the matrix elements x and y.
3x+2y-4y=0
Consider the first equation. Subtract 4y from both sides.
3x-2y=0
Combine 2y and -4y to get -2y.
9x+3y-2y=0
Consider the second equation. Subtract 2y from both sides.
9x+y=0
Combine 3y and -2y to get y.
3x-2y=0,9x+y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
9\times 3x+9\left(-2\right)y=0,3\times 9x+3y=0
To make 3x and 9x equal, multiply all terms on each side of the first equation by 9 and all terms on each side of the second by 3.
27x-18y=0,27x+3y=0
Simplify.
27x-27x-18y-3y=0
Subtract 27x+3y=0 from 27x-18y=0 by subtracting like terms on each side of the equal sign.
-18y-3y=0
Add 27x to -27x. Terms 27x and -27x cancel out, leaving an equation with only one variable that can be solved.
-21y=0
Add -18y to -3y.
y=0
Divide both sides by -21.
9x=0
Substitute 0 for y in 9x+y=0. Because the resulting equation contains only one variable, you can solve for x directly.
x=0
Divide both sides by 9.
x=0,y=0
The system is now solved.