Solve for x, y
x=700
y=-400
Graph
Share
Copied to clipboard
3x+2y=1300,5x+2y=2700
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+2y=1300
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-2y+1300
Subtract 2y from both sides of the equation.
x=\frac{1}{3}\left(-2y+1300\right)
Divide both sides by 3.
x=-\frac{2}{3}y+\frac{1300}{3}
Multiply \frac{1}{3} times -2y+1300.
5\left(-\frac{2}{3}y+\frac{1300}{3}\right)+2y=2700
Substitute \frac{-2y+1300}{3} for x in the other equation, 5x+2y=2700.
-\frac{10}{3}y+\frac{6500}{3}+2y=2700
Multiply 5 times \frac{-2y+1300}{3}.
-\frac{4}{3}y+\frac{6500}{3}=2700
Add -\frac{10y}{3} to 2y.
-\frac{4}{3}y=\frac{1600}{3}
Subtract \frac{6500}{3} from both sides of the equation.
y=-400
Divide both sides of the equation by -\frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{2}{3}\left(-400\right)+\frac{1300}{3}
Substitute -400 for y in x=-\frac{2}{3}y+\frac{1300}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{800+1300}{3}
Multiply -\frac{2}{3} times -400.
x=700
Add \frac{1300}{3} to \frac{800}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=700,y=-400
The system is now solved.
3x+2y=1300,5x+2y=2700
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&2\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1300\\2700\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&2\\5&2\end{matrix}\right))\left(\begin{matrix}3&2\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&2\end{matrix}\right))\left(\begin{matrix}1300\\2700\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&2\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&2\end{matrix}\right))\left(\begin{matrix}1300\\2700\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\5&2\end{matrix}\right))\left(\begin{matrix}1300\\2700\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-2\times 5}&-\frac{2}{3\times 2-2\times 5}\\-\frac{5}{3\times 2-2\times 5}&\frac{3}{3\times 2-2\times 5}\end{matrix}\right)\left(\begin{matrix}1300\\2700\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{5}{4}&-\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}1300\\2700\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 1300+\frac{1}{2}\times 2700\\\frac{5}{4}\times 1300-\frac{3}{4}\times 2700\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}700\\-400\end{matrix}\right)
Do the arithmetic.
x=700,y=-400
Extract the matrix elements x and y.
3x+2y=1300,5x+2y=2700
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x-5x+2y-2y=1300-2700
Subtract 5x+2y=2700 from 3x+2y=1300 by subtracting like terms on each side of the equal sign.
3x-5x=1300-2700
Add 2y to -2y. Terms 2y and -2y cancel out, leaving an equation with only one variable that can be solved.
-2x=1300-2700
Add 3x to -5x.
-2x=-1400
Add 1300 to -2700.
x=700
Divide both sides by -2.
5\times 700+2y=2700
Substitute 700 for x in 5x+2y=2700. Because the resulting equation contains only one variable, you can solve for y directly.
3500+2y=2700
Multiply 5 times 700.
2y=-800
Subtract 3500 from both sides of the equation.
y=-400
Divide both sides by 2.
x=700,y=-400
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}