Solve for x, y
x = -\frac{135}{19} = -7\frac{2}{19} \approx -7.105263158
y = \frac{307}{19} = 16\frac{3}{19} \approx 16.157894737
Graph
Share
Copied to clipboard
3x+2y=11,4x+9y=117
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+2y=11
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-2y+11
Subtract 2y from both sides of the equation.
x=\frac{1}{3}\left(-2y+11\right)
Divide both sides by 3.
x=-\frac{2}{3}y+\frac{11}{3}
Multiply \frac{1}{3} times -2y+11.
4\left(-\frac{2}{3}y+\frac{11}{3}\right)+9y=117
Substitute \frac{-2y+11}{3} for x in the other equation, 4x+9y=117.
-\frac{8}{3}y+\frac{44}{3}+9y=117
Multiply 4 times \frac{-2y+11}{3}.
\frac{19}{3}y+\frac{44}{3}=117
Add -\frac{8y}{3} to 9y.
\frac{19}{3}y=\frac{307}{3}
Subtract \frac{44}{3} from both sides of the equation.
y=\frac{307}{19}
Divide both sides of the equation by \frac{19}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{2}{3}\times \frac{307}{19}+\frac{11}{3}
Substitute \frac{307}{19} for y in x=-\frac{2}{3}y+\frac{11}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{614}{57}+\frac{11}{3}
Multiply -\frac{2}{3} times \frac{307}{19} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{135}{19}
Add \frac{11}{3} to -\frac{614}{57} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{135}{19},y=\frac{307}{19}
The system is now solved.
3x+2y=11,4x+9y=117
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&2\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\117\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}3&2\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}11\\117\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&2\\4&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}11\\117\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}11\\117\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{3\times 9-2\times 4}&-\frac{2}{3\times 9-2\times 4}\\-\frac{4}{3\times 9-2\times 4}&\frac{3}{3\times 9-2\times 4}\end{matrix}\right)\left(\begin{matrix}11\\117\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{19}&-\frac{2}{19}\\-\frac{4}{19}&\frac{3}{19}\end{matrix}\right)\left(\begin{matrix}11\\117\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{19}\times 11-\frac{2}{19}\times 117\\-\frac{4}{19}\times 11+\frac{3}{19}\times 117\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{135}{19}\\\frac{307}{19}\end{matrix}\right)
Do the arithmetic.
x=-\frac{135}{19},y=\frac{307}{19}
Extract the matrix elements x and y.
3x+2y=11,4x+9y=117
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4\times 3x+4\times 2y=4\times 11,3\times 4x+3\times 9y=3\times 117
To make 3x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 3.
12x+8y=44,12x+27y=351
Simplify.
12x-12x+8y-27y=44-351
Subtract 12x+27y=351 from 12x+8y=44 by subtracting like terms on each side of the equal sign.
8y-27y=44-351
Add 12x to -12x. Terms 12x and -12x cancel out, leaving an equation with only one variable that can be solved.
-19y=44-351
Add 8y to -27y.
-19y=-307
Add 44 to -351.
y=\frac{307}{19}
Divide both sides by -19.
4x+9\times \frac{307}{19}=117
Substitute \frac{307}{19} for y in 4x+9y=117. Because the resulting equation contains only one variable, you can solve for x directly.
4x+\frac{2763}{19}=117
Multiply 9 times \frac{307}{19}.
4x=-\frac{540}{19}
Subtract \frac{2763}{19} from both sides of the equation.
x=-\frac{135}{19}
Divide both sides by 4.
x=-\frac{135}{19},y=\frac{307}{19}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}