Solve for x, y, z
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
y = -\frac{31}{6} = -5\frac{1}{6} \approx -5.166666667
z = \frac{55}{3} = 18\frac{1}{3} \approx 18.333333333
Share
Copied to clipboard
z=-3x-2y+1
Solve 3x+2y+z=1 for z.
2x+6y+2\left(-3x-2y+1\right)=1 2x+8y+3\left(-3x-2y+1\right)=9
Substitute -3x-2y+1 for z in the second and third equation.
y=2x-\frac{1}{2} x=-\frac{6}{7}+\frac{2}{7}y
Solve these equations for y and x respectively.
x=-\frac{6}{7}+\frac{2}{7}\left(2x-\frac{1}{2}\right)
Substitute 2x-\frac{1}{2} for y in the equation x=-\frac{6}{7}+\frac{2}{7}y.
x=-\frac{7}{3}
Solve x=-\frac{6}{7}+\frac{2}{7}\left(2x-\frac{1}{2}\right) for x.
y=2\left(-\frac{7}{3}\right)-\frac{1}{2}
Substitute -\frac{7}{3} for x in the equation y=2x-\frac{1}{2}.
y=-\frac{31}{6}
Calculate y from y=2\left(-\frac{7}{3}\right)-\frac{1}{2}.
z=-3\left(-\frac{7}{3}\right)-2\left(-\frac{31}{6}\right)+1
Substitute -\frac{31}{6} for y and -\frac{7}{3} for x in the equation z=-3x-2y+1.
z=\frac{55}{3}
Calculate z from z=-3\left(-\frac{7}{3}\right)-2\left(-\frac{31}{6}\right)+1.
x=-\frac{7}{3} y=-\frac{31}{6} z=\frac{55}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}