Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

3x-y+z=4E_{3} 2x+3y+3z=21E_{z} 3x+2y+4z=19E_{1}
Reorder the equations.
y=3x+z-4E_{3}
Solve 3x-y+z=4E_{3} for y.
2x+3\left(3x+z-4E_{3}\right)+3z=21E_{z} 3x+2\left(3x+z-4E_{3}\right)+4z=19E_{1}
Substitute 3x+z-4E_{3} for y in the second and third equation.
x=-\frac{6}{11}z+\frac{12}{11}E_{3}+\frac{21}{11}E_{z} z=-\frac{3}{2}x+\frac{4}{3}E_{3}+\frac{19}{6}E_{1}
Solve these equations for x and z respectively.
z=-\frac{3}{2}\left(-\frac{6}{11}z+\frac{12}{11}E_{3}+\frac{21}{11}E_{z}\right)+\frac{4}{3}E_{3}+\frac{19}{6}E_{1}
Substitute -\frac{6}{11}z+\frac{12}{11}E_{3}+\frac{21}{11}E_{z} for x in the equation z=-\frac{3}{2}x+\frac{4}{3}E_{3}+\frac{19}{6}E_{1}.
z=\frac{209}{12}E_{1}-\frac{63}{4}E_{z}-\frac{5}{3}E_{3}
Solve z=-\frac{3}{2}\left(-\frac{6}{11}z+\frac{12}{11}E_{3}+\frac{21}{11}E_{z}\right)+\frac{4}{3}E_{3}+\frac{19}{6}E_{1} for z.
x=-\frac{6}{11}\left(\frac{209}{12}E_{1}-\frac{63}{4}E_{z}-\frac{5}{3}E_{3}\right)+\frac{12}{11}E_{3}+\frac{21}{11}E_{z}
Substitute \frac{209}{12}E_{1}-\frac{63}{4}E_{z}-\frac{5}{3}E_{3} for z in the equation x=-\frac{6}{11}z+\frac{12}{11}E_{3}+\frac{21}{11}E_{z}.
x=-\frac{19}{2}E_{1}+\frac{21}{2}E_{z}+2E_{3}
Calculate x from x=-\frac{6}{11}\left(\frac{209}{12}E_{1}-\frac{63}{4}E_{z}-\frac{5}{3}E_{3}\right)+\frac{12}{11}E_{3}+\frac{21}{11}E_{z}.
y=3\left(-\frac{19}{2}E_{1}+\frac{21}{2}E_{z}+2E_{3}\right)+\frac{209}{12}E_{1}-\frac{63}{4}E_{z}-\frac{5}{3}E_{3}-4E_{3}
Substitute -\frac{19}{2}E_{1}+\frac{21}{2}E_{z}+2E_{3} for x and \frac{209}{12}E_{1}-\frac{63}{4}E_{z}-\frac{5}{3}E_{3} for z in the equation y=3x+z-4E_{3}.
y=-\frac{133}{12}E_{1}+\frac{63}{4}E_{z}+\frac{1}{3}E_{3}
Calculate y from y=3\left(-\frac{19}{2}E_{1}+\frac{21}{2}E_{z}+2E_{3}\right)+\frac{209}{12}E_{1}-\frac{63}{4}E_{z}-\frac{5}{3}E_{3}-4E_{3}.
x=-\frac{19}{2}E_{1}+\frac{21}{2}E_{z}+2E_{3} y=-\frac{133}{12}E_{1}+\frac{63}{4}E_{z}+\frac{1}{3}E_{3} z=\frac{209}{12}E_{1}-\frac{63}{4}E_{z}-\frac{5}{3}E_{3}
The system is now solved.