Solve for x, n
x=-4
n = \frac{379}{24} = 15\frac{19}{24} \approx 15.791666667
Graph
Share
Copied to clipboard
-x+101-33=108-16x-100
Consider the first equation. Combine 3x and -4x to get -x.
-x+68=108-16x-100
Subtract 33 from 101 to get 68.
-x+68=8-16x
Subtract 100 from 108 to get 8.
-x+68+16x=8
Add 16x to both sides.
15x+68=8
Combine -x and 16x to get 15x.
15x=8-68
Subtract 68 from both sides.
15x=-60
Subtract 68 from 8 to get -60.
x=\frac{-60}{15}
Divide both sides by 15.
x=-4
Divide -60 by 15 to get -4.
14-12\left(-4\right)+39\left(-4\right)-18\left(-4\right)=256-6n\left(-4\right)-657
Consider the second equation. Insert the known values of variables into the equation.
14+48-156+72=256-6n\left(-4\right)-657
Do the multiplications.
62-156+72=256-6n\left(-4\right)-657
Add 14 and 48 to get 62.
-94+72=256-6n\left(-4\right)-657
Subtract 156 from 62 to get -94.
-22=256-6n\left(-4\right)-657
Add -94 and 72 to get -22.
-22=256+24n-657
Multiply -6 and -4 to get 24.
-22=-401+24n
Subtract 657 from 256 to get -401.
-401+24n=-22
Swap sides so that all variable terms are on the left hand side.
24n=-22+401
Add 401 to both sides.
24n=379
Add -22 and 401 to get 379.
n=\frac{379}{24}
Divide both sides by 24.
x=-4 n=\frac{379}{24}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}