Microsoft Math Solver
Solve
Practice
Download
Solve
Practice
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Download
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Solve
algebra
trigonometry
statistics
calculus
matrices
variables
list
Solve for t, s
t = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
s = \frac{119}{12} = 9\frac{11}{12} \approx 9.916666667
View solution steps
Solution Steps
\left. \begin{array} { l } { 3 t - 3 = 5 } \\ { 4 s - 37 = t } \end{array} \right.
Consider the first equation. Add 3 to both sides.
3t=5+3
Add 5 and 3 to get 8.
3t=8
Divide both sides by 3.
t=\frac{8}{3}
Consider the second equation. Insert the known values of variables into the equation.
4s-37=\frac{8}{3}
Add 37 to both sides.
4s=\frac{8}{3}+37
Add \frac{8}{3} and 37 to get \frac{119}{3}.
4s=\frac{119}{3}
Divide both sides by 4.
s=\frac{\frac{119}{3}}{4}
Express \frac{\frac{119}{3}}{4} as a single fraction.
s=\frac{119}{3\times 4}
Multiply 3 and 4 to get 12.
s=\frac{119}{12}
The system is now solved.
t=\frac{8}{3} s=\frac{119}{12}
Quiz
Algebra
5 problems similar to:
\left. \begin{array} { l } { 3 t - 3 = 5 } \\ { 4 s - 37 = t } \end{array} \right.
Similar Problems from Web Search
How to compute e^{At} with A=\left ( \begin{array}{cc} -3 & 4 \\ -4 & -3 \end{array} \right )
https://math.stackexchange.com/questions/126547/how-to-compute-eat-with-a-left-beginarraycc-3-4-4-3-end
For a solution to the second version of the question, see below. This applies to the first version of the question, where \color{red}{A=\begin{pmatrix}3 & 4 \\ -4 & -3\end{pmatrix}}. Since \text{tr}(A)=0 ...
If \displaystyle{A}={\left(\begin{array}{cc} {3}&{2}\\-{3}&-{4}\end{array}\right)} and \displaystyle{B}={\left(\begin{array}{cc} {0}&-{5}\\-{2}&{1}\end{array}\right)} , What are the matrices X ...
https://socratic.org/questions/if-a-3-2-3-4-and-b-0-5-2-1-what-is-the-matrices-x-and-y-such-that-2a-3x-b-and-3a
\displaystyle{X}={\left(\begin{array}{cc} {2}&{3}\\-\frac{{4}}{{3}}&-{3}\end{array}\right)} and \displaystyle{Y}={\left(\begin{array}{cc} -\frac{{9}}{{2}}&-{8}\\\frac{{5}}{{2}}&{7}\end{array}\right)} ...
Shortest distance between point and line of intersection.
https://math.stackexchange.com/questions/153751/shortest-distance-between-point-and-line-of-intersection
Your cross product is incorrect. \begin{pmatrix} 1 \\ -1 \\ 3\end{pmatrix} \times \begin{pmatrix} -5 \\ 12 \\ -1\end{pmatrix} = \begin{pmatrix} (-1) \times (-1) - 12 \times 3 \\ 3 \times (-5) - 1 \times (-1) \\ 1 \times 12 - (-1) \times (-5)\end{pmatrix} = \begin{pmatrix} -35 \\ -14 \\ 7\end{pmatrix} = 7 \begin{pmatrix} -5 \\ -2 \\ 1\end{pmatrix} ...
Find all right inverses of matrix A
https://math.stackexchange.com/questions/1272026/find-all-right-inverses-of-matrix-a
We wish to find all right inverses of A= \begin{bmatrix} 1&1&0\\2&3&1 \end{bmatrix} To do so, note that B= \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} ...
Determine variable vector compontent so vectors are independent
https://math.stackexchange.com/q/436014
These three linear vectors are independent iff the determinant of the matrix built with them is non zero. Hence we study \det \begin{pmatrix}1&4&2\\2&5&6t-1\\1&2&7t\end{pmatrix} = -9t-4. This ...
Simple Matrices Help
https://math.stackexchange.com/q/1319728
You cannot perform type 3 ERO for 2 rows where the pivot row are the other one at the same time. The EROs should be performed one by one, so when you add 0.5 times row 3 to row 2, row 2 has already ...
More Items
Share
Copy
Copied to clipboard
3t=5+3
Consider the first equation. Add 3 to both sides.
3t=8
Add 5 and 3 to get 8.
t=\frac{8}{3}
Divide both sides by 3.
4s-37=\frac{8}{3}
Consider the second equation. Insert the known values of variables into the equation.
4s=\frac{8}{3}+37
Add 37 to both sides.
4s=\frac{119}{3}
Add \frac{8}{3} and 37 to get \frac{119}{3}.
s=\frac{\frac{119}{3}}{4}
Divide both sides by 4.
s=\frac{119}{3\times 4}
Express \frac{\frac{119}{3}}{4} as a single fraction.
s=\frac{119}{12}
Multiply 3 and 4 to get 12.
t=\frac{8}{3} s=\frac{119}{12}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}
Back to top