\left. \begin{array} { l } { 3 s ^ { 2 } - 5 s t - 12 t ^ { 2 } + 6 s - 18 t } \\ { 2 m ^ { 2 } + 3 m n - 20 n ^ { 2 } + 7 m + 28 n } \end{array} \right.
Least Common Multiple
\left(s-3t\right)\left(m+4n\right)\left(2m-5n+7\right)\left(3s+4t+6\right)
Evaluate
\left(s-3t\right)\left(3s+4t+6\right),\ \left(m+4n\right)\left(2m-5n+7\right)
Share
Copied to clipboard
\left(s-3t\right)\left(m+4n\right)\left(2m-5n+7\right)\left(3s+4t+6\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
6m^{2}s^{2}-24m^{2}t^{2}+9mns^{2}-15mnst+18mns-36mnt^{2}-54mnt+21ms^{2}-35mst+42ms-84mt^{2}-126mt-60n^{2}s^{2}+240n^{2}t^{2}+84ns^{2}-140nst+168ns-336nt^{2}-504nt+12sm^{2}-120sn^{2}-10stm^{2}+100stn^{2}-36tm^{2}+360tn^{2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}