Solve for p, s
s=7
p=4
Share
Copied to clipboard
3p+4s=40,5p+6s=62
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3p+4s=40
Choose one of the equations and solve it for p by isolating p on the left hand side of the equal sign.
3p=-4s+40
Subtract 4s from both sides of the equation.
p=\frac{1}{3}\left(-4s+40\right)
Divide both sides by 3.
p=-\frac{4}{3}s+\frac{40}{3}
Multiply \frac{1}{3} times -4s+40.
5\left(-\frac{4}{3}s+\frac{40}{3}\right)+6s=62
Substitute \frac{-4s+40}{3} for p in the other equation, 5p+6s=62.
-\frac{20}{3}s+\frac{200}{3}+6s=62
Multiply 5 times \frac{-4s+40}{3}.
-\frac{2}{3}s+\frac{200}{3}=62
Add -\frac{20s}{3} to 6s.
-\frac{2}{3}s=-\frac{14}{3}
Subtract \frac{200}{3} from both sides of the equation.
s=7
Divide both sides of the equation by -\frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
p=-\frac{4}{3}\times 7+\frac{40}{3}
Substitute 7 for s in p=-\frac{4}{3}s+\frac{40}{3}. Because the resulting equation contains only one variable, you can solve for p directly.
p=\frac{-28+40}{3}
Multiply -\frac{4}{3} times 7.
p=4
Add \frac{40}{3} to -\frac{28}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
p=4,s=7
The system is now solved.
3p+4s=40,5p+6s=62
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&4\\5&6\end{matrix}\right)\left(\begin{matrix}p\\s\end{matrix}\right)=\left(\begin{matrix}40\\62\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&4\\5&6\end{matrix}\right))\left(\begin{matrix}3&4\\5&6\end{matrix}\right)\left(\begin{matrix}p\\s\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&6\end{matrix}\right))\left(\begin{matrix}40\\62\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&4\\5&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}p\\s\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&6\end{matrix}\right))\left(\begin{matrix}40\\62\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}p\\s\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&6\end{matrix}\right))\left(\begin{matrix}40\\62\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}p\\s\end{matrix}\right)=\left(\begin{matrix}\frac{6}{3\times 6-4\times 5}&-\frac{4}{3\times 6-4\times 5}\\-\frac{5}{3\times 6-4\times 5}&\frac{3}{3\times 6-4\times 5}\end{matrix}\right)\left(\begin{matrix}40\\62\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}p\\s\end{matrix}\right)=\left(\begin{matrix}-3&2\\\frac{5}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}40\\62\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}p\\s\end{matrix}\right)=\left(\begin{matrix}-3\times 40+2\times 62\\\frac{5}{2}\times 40-\frac{3}{2}\times 62\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}p\\s\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
Do the arithmetic.
p=4,s=7
Extract the matrix elements p and s.
3p+4s=40,5p+6s=62
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5\times 3p+5\times 4s=5\times 40,3\times 5p+3\times 6s=3\times 62
To make 3p and 5p equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 3.
15p+20s=200,15p+18s=186
Simplify.
15p-15p+20s-18s=200-186
Subtract 15p+18s=186 from 15p+20s=200 by subtracting like terms on each side of the equal sign.
20s-18s=200-186
Add 15p to -15p. Terms 15p and -15p cancel out, leaving an equation with only one variable that can be solved.
2s=200-186
Add 20s to -18s.
2s=14
Add 200 to -186.
s=7
Divide both sides by 2.
5p+6\times 7=62
Substitute 7 for s in 5p+6s=62. Because the resulting equation contains only one variable, you can solve for p directly.
5p+42=62
Multiply 6 times 7.
5p=20
Subtract 42 from both sides of the equation.
p=4
Divide both sides by 5.
p=4,s=7
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}