Solve for b, a, c
b = -\frac{544}{45} = -12\frac{4}{45} \approx -12.088888889
a = \frac{64}{45} = 1\frac{19}{45} \approx 1.422222222
c = -\frac{64}{5} = -12\frac{4}{5} = -12.8
Share
Copied to clipboard
8a+b+b=c 4c-3b+2a=b 3b+32+4a=a
Reorder the equations.
c=8a+2b
Solve 8a+b+b=c for c.
4\left(8a+2b\right)-3b+2a=b
Substitute 8a+2b for c in the equation 4c-3b+2a=b.
a=-\frac{2}{17}b b=-\frac{32}{3}-a
Solve the second equation for a and the third equation for b.
b=-\frac{32}{3}-\left(-\frac{2}{17}b\right)
Substitute -\frac{2}{17}b for a in the equation b=-\frac{32}{3}-a.
b=-\frac{544}{45}
Solve b=-\frac{32}{3}-\left(-\frac{2}{17}b\right) for b.
a=-\frac{2}{17}\left(-\frac{544}{45}\right)
Substitute -\frac{544}{45} for b in the equation a=-\frac{2}{17}b.
a=\frac{64}{45}
Calculate a from a=-\frac{2}{17}\left(-\frac{544}{45}\right).
c=8\times \frac{64}{45}+2\left(-\frac{544}{45}\right)
Substitute \frac{64}{45} for a and -\frac{544}{45} for b in the equation c=8a+2b.
c=-\frac{64}{5}
Calculate c from c=8\times \frac{64}{45}+2\left(-\frac{544}{45}\right).
b=-\frac{544}{45} a=\frac{64}{45} c=-\frac{64}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}