Solve for a, b, c
a = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
b = \frac{25}{3} = 8\frac{1}{3} \approx 8.333333333
c=\frac{1}{6}\approx 0.166666667
Share
Copied to clipboard
a=\frac{10}{3}
Consider the first equation. Divide both sides by 3.
\frac{10}{3}+2b=20
Consider the second equation. Insert the known values of variables into the equation.
2b=20-\frac{10}{3}
Subtract \frac{10}{3} from both sides.
2b=\frac{50}{3}
Subtract \frac{10}{3} from 20 to get \frac{50}{3}.
b=\frac{\frac{50}{3}}{2}
Divide both sides by 2.
b=\frac{50}{3\times 2}
Express \frac{\frac{50}{3}}{2} as a single fraction.
b=\frac{50}{6}
Multiply 3 and 2 to get 6.
b=\frac{25}{3}
Reduce the fraction \frac{50}{6} to lowest terms by extracting and canceling out 2.
\frac{25}{3}+4c=9
Consider the third equation. Insert the known values of variables into the equation.
4c=9-\frac{25}{3}
Subtract \frac{25}{3} from both sides.
4c=\frac{2}{3}
Subtract \frac{25}{3} from 9 to get \frac{2}{3}.
c=\frac{\frac{2}{3}}{4}
Divide both sides by 4.
c=\frac{2}{3\times 4}
Express \frac{\frac{2}{3}}{4} as a single fraction.
c=\frac{2}{12}
Multiply 3 and 4 to get 12.
c=\frac{1}{6}
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
a=\frac{10}{3} b=\frac{25}{3} c=\frac{1}{6}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}