Solve for a, b, λ
a=1
b=0
\lambda =\frac{3}{4}=0.75
Share
Copied to clipboard
a=-\frac{4}{3}b+\frac{4}{3}\lambda
Solve 3a+4b=4\lambda for a.
4\lambda +3\left(-\frac{4}{3}b+\frac{4}{3}\lambda \right)=6
Substitute -\frac{4}{3}b+\frac{4}{3}\lambda for a in the equation 4\lambda +3a=6.
b=-\frac{3}{2}+2\lambda \lambda =\frac{3}{4}-\frac{3}{4}b
Solve the second equation for b and the third equation for \lambda .
\lambda =\frac{3}{4}-\frac{3}{4}\left(-\frac{3}{2}+2\lambda \right)
Substitute -\frac{3}{2}+2\lambda for b in the equation \lambda =\frac{3}{4}-\frac{3}{4}b.
\lambda =\frac{3}{4}
Solve \lambda =\frac{3}{4}-\frac{3}{4}\left(-\frac{3}{2}+2\lambda \right) for \lambda .
b=-\frac{3}{2}+2\times \frac{3}{4}
Substitute \frac{3}{4} for \lambda in the equation b=-\frac{3}{2}+2\lambda .
b=0
Calculate b from b=-\frac{3}{2}+2\times \frac{3}{4}.
a=-\frac{4}{3}\times 0+\frac{4}{3}\times \frac{3}{4}
Substitute 0 for b and \frac{3}{4} for \lambda in the equation a=-\frac{4}{3}b+\frac{4}{3}\lambda .
a=1
Calculate a from a=-\frac{4}{3}\times 0+\frac{4}{3}\times \frac{3}{4}.
a=1 b=0 \lambda =\frac{3}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}